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Abstract

Under the homotopy hypothesis, higher dimensional groups
are defined as pointed homotopy types whose homotopy
groups vanish outside a certain range. In particular, a 2-
group is a pointed connected homotopy 2-type. Classically,
2-groups have two equivalent algebraic descriptions: one in
terms of weak monoidal categories and the other in terms of
group cohomology. We present these two classifications of
pointed connected 2-types in homotopy type theory, thereby
providing internal, constructive counterparts to the tradi-
tional classifications of 2-groups. Our first classification (in
terms of monoidal categories) takes the form of a bicate-
gorical equivalence, while our second is a type equivalence
that extends to n-groups for all integers n > 2. We have
mechanized our results in Agda.
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mathematics; Logic and verification; « Mathematics of com-
puting — Algebraic topology.
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1 Introduction

Groups are fundamental to modern algebra. By treating a
group’s equational laws as isomorphisms in a category so
that multiplication is a monoidal product and inverses are
adjoint equivalences, we arrive at a coherent 2-group, the 2-
dimensional generalization of a group. The study of coherent
2-groups has a fruitful history spanning algebraic topology
and mathematical physics [4, 5, 23]. From the perspective
of homotopy theory, coherent 2-groups fit into a layered
correspondence, known as the homotopy hypothesis, between
spaces and higher dimensional groupoids [3]. The homotopy
hypothesis provides a uniform definition of higher groups in
homotopy type theory (HoTT) [7]. Following [20], we call
this definition the internal notion of higher group. It lets
us apply the tools of synthetic homotopy theory directly
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to group theory at any dimension. In dimension one, this
application has led to simpler, fundamentally new proofs
of important group-theoretic results [7, 15, 27], such as the
Nielsen-Schreier theorem. The application in dimension two
is just beginning [28].

This paper makes two principal contributions—which we
discuss now—to higher group theory in HoTT, with each
shedding new light on the internal notion of higher group.

The homotopy hypothesis asserts that this internal no-
tion (as a space) is equivalent to the axiomatic notion (as a
groupoid). In the 1-dimensional case, the latter is the usual
set-theoretic definition of a (possibly abelian) group. In this
case, we can prove the homotopy hypothesis in HoTT. In
particular, applying the loop space to a pointed connected 1-
type—the internal notion of a 1-group—forms an equivalence
between the 1-category of such types and the 1-category of
axiomatic groups [7, Theorem 5.1], with the functor in the re-
verse direction forming the delooping of an axiomatic group.
This equivalence is useful for group theory in HoTT as we
can integrate two kinds of proofs: those about internal groups
developed with synthetic homotopy theory and those about
axiomatic groups developed in the set-theoretic setting.

It’s natural to ask for a similar equivalence between the
internal and axiomatic notion above dimension one. We have
lacked one, however, as the higher structure makes even the
2-dimensional case far harder. Buchholtz, van Doorn, and
Rijke conjecture that the 2-dimensional case is provable in
HoTT [7, Section 9]. In classical homotopy theory, Baez and
Lauda conjecture the basic 2-dimensional case, i.e., for the
spaces sitting at the first connectivity level [4, Section 8.2].

Our first contribution settles the basic 2-dimensional case
in HoTT: Working in HoTT [29], we show that applying
the loop space to a pointed connected 2-type (the internal
notion of 2-group) forms a (biadjoint) biequivalence [11, Defi-
nition 2.3] between the (2, 1)-category of such types and the
(2, 1)-category of coherent 2-groups (the axiomatic notion
of 2-group). To this end, we formulate a notion of biequiv-
alence that is simpler than the traditional one but still, for
univalent bicategories, equivalent to identity. As a result,
the biequivalence we build is equivalent to a path between
these (2, 1)-categories, so that one can easily transfer any
bicategorical property between them.

The biequivalence we build extends the preceding equiva-
lence constructed for 1-groups. It has two main stages. First,
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we form the delooping of a coherent 2-group G as a higher
inductive type that generalizes the delooping of a group due
to Licata and Finster [17]. Intuitively, the delooping is the
smallest pointed 2-type T admitting a 2-group morphism
from G to T’s loop space Q(T), which turns out to be an iso-
morphism by minimality. The delooping defines a map from
the type of coherent 2-groups to that of pointed connected
2-types. Second, we make this map into a pseudofunctor (a
bicategorical functor) and prove that it forms a biequivalence
with the loop pseudofunctor Q.

We now see that the loop space Q(X) of a pointed con-
nected 2-type X preserves all information in a bicategorical
sense. What if we only have access to the fundamental group
m(X) = |Q(X)||, of X? Unsurprisingly, we need more in-
formation to classify X, but how much more? In classical
homotopy theory, MacLane and Whitehead showed X is de-
termined by 71 (X), the canonical action of 71 (X) on m2(X),
and a group cohomology class in H>(7;(X), 72(X)) called
the Postnikov invariant of X [19]. These three pieces of data
make up a Sinh triple (named after Hoang Xuan Sinh), which
consists of a group G, a G-module H, and a cohomology
class ¥ € H3(G, H). MacLane and Whitehead’s classification
arises from a set-theoretic bijection—which we call the MW
bijection—between the pointed connected 2-types and the
isomorphism classes of Sinh triples. In HoTT, the pointed
connected 2-types form not a set but a 2-type. How, then,
can we turn the MW bijection into a type equivalence?

Our second contribution answers this question with an
equivalence between the type of pointed connected 2-types
and the type of untruncated Sinh triples—triples as before but
with k as a cocycle (an element of the relevant untruncated
mapping space) rather than cohomology class (which lives in
the set-truncated space). Moreover, by taking the set trunca-
tion of this equivalence, we recover the MW bijection—here
between the (connected) components (equivalently, mere
isomorphism classes) of pointed connected 2-types and the
components of Sinh triples. We thus recover the Postnikov
invariant of a pointed connected 2-type. Our type equiva-
lence stems from general results about deloopings of types
and so yields a substantially different proof of the MW bijec-
tion from MacLane and Whitehead’s. In particular, ours is
constructive and works in dimension two and above.

Indeed, our equivalence is uniform in dimension n, as one
between the pointed connected (n + 1)-types—i.e., internal
(n + 1)-groups—and the untruncated Sinh n-triples for n > 1.
It sends an internal (n + 1)-group X to the triple consisting
of X’s fundamental internal n-group IT,, (X), the canonical ac-
tion of IT,, (X) on m,4+1(X), and an invariant of X in the form
of an (n + 2)-dimensional cocycle on IT, (X) over 7,11 (X).

With our first classification of pointed connected 2-types
(from the biequivalence), we get a bijection between the com-
ponents of coherent 2-groups and those of Sinh triples. The
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Postnikov invariant produced for a 2-group G by this com-
posite equivalence is traditionally called the Sinh invariant
of G, and ours is the first construction of it in type theory.

Outline. We consider our two contributions in turn, start-
ing with the biequivalence. We first review basic notions
of bicategory theory while focusing on the (2, 1)-category
of pointed connected 2-types and that of coherent 2-groups
(Section 4). Afterward, we outline the computations involved
in the two stages of the biequivalence between them (Sec-
tions 5 and 6). We deduce from the biequivalence an identity
between the two (2, 1)-categories via univalence (Section 7).

For our second contribution, we begin by reviewing some
key results on deloopings of types (Section 8). With these
results, we construct, for each n > 1, an equivalence between
the type of internal (n + 1)-groups and that of untruncated
Sinh n-triples (Section 9). We then derive a bijection between
the components of internal (n + 1)-groups and the compo-
nents of Sinh n-triples, where the cocycle is replaced by a
cohomology class, as in the MW bijection.

Agda formalization. This paper can serve as a roadmap for
our Agda codebase [12], which is completely self-contained
and formalizes our entire development. Hyperlinks to the
code will be blue and in brackets. Besides our new results, the
codebase includes important theorems from [7, 32], offering
the first, to our knowledge, Agda formalization of [7]’s higher
delooping theorem for abelian groups.

To check the biequivalence, Agda needs a lot of time and
memory despite our careful engineering of the code. Part of
this high computational cost highlights a major difference
between our type system—Book HoTT—and cubical type the-
ory [2, 31]: Cubical has definitional f-rules for path construc-
tors in higher inductive types (HITs), which greatly simplifies
the biequivalence by erasing many postulated equalities that
we must handle. Although constructions with HITs tend to
be much harder in Book HoTT [21], they have value in this
setting. Book HoT'T has models in all (oo, 1)-toposes [18, 26],
whereas it’s not known whether the type theory underlying
Cubical Agda has a model Quillen equivalent to the category
of spaces. Moreover, cubical is an extension of Book HoTT [2,
Section 2.16], so we can interpret our results into it.

2 Related work

Baez and Lauda introduced the notion of a coherent 2-group
in the language of classical category theory [4, Section 3]. In
HoTT, Veltri and van der Weide internalized its definition as
an example of an algebra over a signature [30, Section 7.4]
and thereby proved the bicategory of coherent 2-groups is
univalent (of which we give a direct proof in Section 4). Baez
and Lauda gave—without passing through spaces—a mod-
ern proof that coherent 2-groups are in bijection with Sinh
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triples [4, Corollary 8.3.8], a result they trace to Sinh’s PhD
thesis. Unlike ours, their proof is non-constructive. They take
the skeleton S of an arbitrary coherent 2-group’s underlying
category, and the existence of S requires choice [14].
Noohi provides a different but closely related classical
classification of pointed connected 2-types [23, Proposition
6.1]. He considers the category 2Gp of strict 2-groups with
weak equivalences those maps G; — G; inducing isomor-
phisms on the group of isomorphism classes 7,(—) and the
automorphism group Aut(e(_)). He proves the nerve of a
2-category N : 2Cat — sSet induces a 1-categorical equiva-
lence between Ho(2Gp) and the pointed connected 2-types.
Additionally, Baez and Lauda prove that strict 2-groups
are classified by crossed modules, which are pairs of related
groups—a concept that also is central to MacLane and White-
head’s proof. In HoTT, Buchholtz and Schipp von Branitz
show that the type of strict 2-groups is equivalent to that of
crossed modules [8]. They also conjecture that, with the sets
cover 1-types axiom, coherent 2-groups can be strictified.

3 Background on type theory

We assume the reader is familiar with HoTT as in [29], in
which our work takes place. This system extends Martin-
Lof type theory with the univalence axiom and HITs. For
convenience, we review a few basic constructions in HoTT.
But first, a remark on notation: We use (a : A) — B(a) for
the type [[,.4 B(a) and (a : A) X B(a) for the type > .4 B(a).

The first construction is the function ap; : (x =y) —
(f(x) = f(y)) defined by path induction for all functions
f:X — Yandx,y: X. (We use = for the identity/path type
and = for definitional equality.)

LEMMA 3.1 (HOMOTOPY NATURALITY). Let f,g: X — Y.
Forallx,y:X,p:x=y,and H : f ~ g, the square

H(x)

f)

apf<p>H

g(x)
ap,(p)

fW) =7—9W

commutes. We denote the path witnessing that this square
commutes by hnaty (p), but for brevity we may hide H and
refer to the path as homotopy naturality at p.

Here, fi ~ fo = (x:X) — fi(x) = fa(x) for any fi, f> :
(x: X) — Y(x), called the type of homotopies between f;
and f,. We compose homotopies H; * H, by pointwise path
composition. Homotopy naturality respects composition.
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LemMa 3.2. Letf,gh: X > Y,H;: f ~g,andHy : g ~ h.
For allx,y : X and p : x =y, we have a path

fx) h(x) fx) = g(x) g(x) = h(x)
‘ hnats, urr, (p) H = ‘ hnats, (p) H . ‘ hnats, (p) H
fly) == h(y) fly) = 9g(y) 9(y) = h(y)

where « denotes horizontal composition of squares.

The second construction is the transport function transp? :
(x,y:X) > (x=y) > Y(x) = Y(y) for any type family
Y over X. This is defined by path induction.

The final construction is the n-truncation ||—||,, HIT for
each integer n > —2, an operation on types. (When n = -1,
we write ||—||.) For any type X, we have a function |-|,, : X —
IX]l,,- Further, ||X||,, is n-truncated, or an n-type, a notion
defined recursively: a type is —2-truncated if it’s contractible
(i.e., equivalent to the unit type 1) and (n + 1)-truncated if
all of its identity types are n-truncated. We call the unique
element of a contractible type its center. We call —1-types
propositions and 0-types sets. For example, the type (X is an
n-type) is a proposition. Finally, X is n-connected if || X||,, is
contractible. It is connected if it’s 0-connected. We call || X|,
the type of (connected) components of X.

4 Bicategories

To give our first classification of internal 2-groups, we need to
discuss bicategories. For us, bicategory means (2, 1)-category
whose 2-cells (maps between maps) are paths. This definition
is a special case of the standard one, in which 2-cells are just
assumed to be elements of a family of sets [1, Definition 2.1].

Definition 4.1 (BicatStr). A bicategory consists of a type
Ob of objects and

e a family hom of 1-types twice indexed over Ob, whose
elements are called morphisms, maps, or 1-cells

e acomposition operation o : hom(b,¢) — hom(a, b) —
hom(a, c) for all a,b,c : Ob

e an identity map id, for each a : Ob along with a right
unitor and a left unitor: two 2-cells witnessing that id,
is a right unit and a left unit, respectively, for o

e an associator 2-cell witnessing that o is associative and
satisfying the triangle and pentagon identities.

Remark 4.2. A bicategory as in Definition 4.1 is equivalent
to a locally univalent bicategory in the sense of [1, Definition
3.1] all of whose 2-cells are invertible.

Definition 4.3 (Adjequiv). Let C be a bicategory. Let a, b :
Ob(C) and f : homc¢(a,b). We say that f is an adjoint
equivalence if we have a morphism g : hom¢ (b, a), 2-cells
n:idg =go fande: fog =idp, and two zig-zag identities.
We denote the type of adjoint equivalences by AdjEquiv.
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Note that the data of an adjoint equivalence on a morphism
is a proposition [Adjequiv-is-prop], not extra structure.

Example 4.4. We have the bicategory 2Type; of pointed
connected 2-types and pointed maps [Ptd-bc]. Its hom-types
are 1-truncated by [7, Corollary 4.3].

Example 4.5. We have the bicategory c2Grp of (coherent)
2-groups [2Grp-bc]. A 2-group is defined as a (univalent)
monoidal groupoid where, from the viewpoint of a monoidal
groupoid as a single-object bicategory, every object is an
adjoint equivalence. Explicitly, given a universe U, a 2-group
(in U) [CohGrp] is a 1-type G in U along with

e a basepoint id, called the unit of G

e an operation ® : G — G — G, called the tensor
product of G

e a right unitor p, left unitor A, and associator « that
together satisfy the triangle and pentagon identities

e an inverse operation (=)' : G — G
e families of paths linv, : x™! ® x = id and rinvy :
x ® x~! = id related by the zig-zag identities.

A 2-group morphism G; — G, is a function f; : G; — G,
equipped with a family of paths y., : fo(x ® y) = fo(x) ®
fo(y) that respects the associator [CohGrpHomStr].

Note 4.6. Our notion of 2-group morphism is surprisingly
short: a coherent map of the underlying semigroups. The cor-
rect notion must ensure that the map of underlying types pre-
serves all the 2-group data [CohGrpHomStrFull]. To justify
our short definition, we prove that for eachmap fy : G; — G,
of the underlying types of 2-groups, the forgetful function

fully explicit notion on fy — short notionon fy  (9)

is an equivalence [2GrpHomEq]. We outline the proof in
Section A. The short definition is highly valuable (especially
for the formalization) as it lets us define the delooping of a 2-
group G as a HIT K, (G) with fewer constructors (Section 5),
thereby making induction on K5 (G) far simpler.

The structure identity principle (SIP) [24, Theorem 11.6.2]—
a general theorem characterizing identity types of 2-types—
implies that a 2-cell between 2-group morphisms f,g : G; —
G, is equivalent to a (monoidal) natural isomorphism (or iso)
between them: a homotopy fun(f) ~ fun(g) of the under-
lying functions with a proof it commutes with the tensor
product. For example, we build the unitors and associator
for c2Grp via natural isomorphisms [2SGrpMap].

Example 4.7 (Hmtpy2Grp). For every pointed 2-type X,
the loop space Q(X) = (pty = pty) equipped with path
composition is a 2-group, called the fundamental 2-group of
X. For each map f = (fo, f,) : X —. Y of pointed 2-types,
we have a 2-group morphism Q(f) : Q(X) — Q(Y) defined
by induction on the path f,,.
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As the next two examples show, not all 2-groups are de-
fined directly as loop spaces, even though our main result,
Theorem 6.11, implies all 2-groups are equivalent to them.

Example 4.8. For any bicategory C and X : Ob(C), the
type of adjoint autoequivalences AdjEquiv(X, X) is a 2-group
under composition of 1-cells [Aut-adj-2G]—the automor-
phism 2-group on X. If C is the bicategory of 1-types in a uni-
verse, then AdjEquiv(X, X) is the type of self-equivalences
on X, and the function univ : (X = X) — (X = X) coming
from univalence is a 2-group morphism [ua-2SGrpMap].

Example 4.9. The full subcategory of a monoidal groupoid
C on the adjoint equivalences is a 2-group under C’s tensor
product, known as the Picard 2-group of C [13, Section 7].

We end this section with the variant of univalence for
bicategories. As we’ll see, this property interacts nicely with
our concise definition of biequivalence (Definition 6.8).

Definition 4.10 ([1, Definition 3.1]). A bicategory C is (glob-

ally) univalent if the canonical function (a = b) — AdjEquiv(a, b)

is an equivalence for all a, b : Ob(C).

LEMMA 4.11 (ADpJEQ-ExMPS). Both 2Typey and c2Grp are
univalent bicategories.

Proor. We factor through the SIP, which states thata = b
is equivalent, by sending refl, to id,, to isomorphisms a — b,
i.e., maps whose underlying functions are equivalences. O

5 Delooping a 2-group
The Eilenberg-MacLane space K (H, 1) of an (axiomatic) group
H [17, Section 3], also called the classifying space of H, is
the 1-truncated HIT generated by base : K(H, 1), loop :
H — base = base, and a term loop-comp witnessing that
loop is a group map H — Q(K(H,1)). Let U be a uni-
verse and G be a 2-group in U. Define the classifying space
of G as the 2-truncated HIT K,(G) generated by base :
K>(G), loop : G — base = base, and two path constructors
loop-comp and loop-assoc that make loop a 2-group map
G — Q(K:(G)) [Delooping]. An easy consequence of K;’s
induction principle is that K3 (G) is connected [%;-is-conn].
The recursion principle for K,, which we derive from
the induction principle, states that K,(G) is initial in the
category of pointed 2-types X* equipped with a 2-group
morphism G — Q(X™). Explicitly, for every pointed 2-type
= (X, x9) together with a 2-group morphism ¢x- : G —
Q(X"), we have a function M,, : K;(G) — X that satisfies
M, (base) = x; and is equipped with a natural isomorphism:

%pw pr

Q(7:(G)) W) Q(X™)
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We call p,, the point B-rule and p, the tensor f-rule for M,.

A delooping of a group H is a pointed type B equipped
with a group isomorphism H — Q(B). An essential property
of K(H, 1) is that loop makes it a delooping of H. We want
to prove that, likewise, loop makes K;(G) a delooping of G,
i.e., that loop is an equivalence of types. (In this case, we can
easily show it’s the unique delooping by K, (G)’s recursion
principle.) To this end, we adapt the encode-decode proof
used for K(H, 1) [17, Theorem 3.2] to the 2-dimensional case.

We define codes : K3(G) — U=! by recursion on K (G)
so that pr, (codes(base)) = G [codes], where U=! denotes
the 2-type of all 1-truncated types in U. Since G is 1-truncated
by definition, we take it as the basepoint of U=!. To con-
struct codes, we want a 2-group morphism ¢ : G — Q(U=Y).
Define {map : G — (G = G) by mapping g to the type equiv-
alence post-mult(g) : G > G defined by post-mult(g, x) =
x ® g and then applying univ to it. Both post-mult and
univ are 2-group morphisms (see [PostMultMap] and Ex-
ample 4.8, respectively), and we give {inap the composite
of their morphism structures. Now, consider the projection
codes = pr; o codes : K,(G) — U. Define

encode : (z : K3(G)) — base = z — codesy(z)
encode, (p) = transp<°® (p, idg)

This yields encodepgse : Q(K2(G)) — G [encode].

We want to show that loop : G — Q(%K3(G)) is an equiv-
alence with inverse encodep,se. As in [17], encodep,se is a
left inverse of loop [encode-loop]. The main ingredient for
the proof of this claim is the following chain of paths for all
x,y : G, which we denote by transp-codes(x;, y):

transp®des (loop(x), y)
I
via path induction on loop(x)
1l

coe(apy, (P oqes (100p(x))). 1)

n
via codes’s point -rule
U]

coe(fmap (), 1)
(typal) ﬁ—lrlule for coe
yox
where coe : (A = B) — (A = B), defined by path induction,
is the inverse of univ and thus has a f-rule. This chain is also

important for the next part of the proof, so we record the
following coherence property satisfied by its final path.

LEMMA 5.1 (coE-f-mU). Figure 1 (below) commutes.

Next, we show that encodep,s. is a right inverse of loop.
We want a homotopy ri : loop o encodepase ~ ido (s, (G))- We
will define decode : (z : K>(G)) — codesy(z) — base = z
by induction on K3 (G) so that decode(base) = loop. By path
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induction, we then see that decode,(encode,(p)) = p for all
z: K3(G) and p : base = z because every 2-group morphism
preserves the unit. This gives us ri by setting z to base.

We now describe the construction of decode [Decode-
def], which is much more complex than the 1-dimensional
case. Here, the target of the induction is the function type
codesy(z) — base = z for all z : K;(G). In such a situation,
we have the following form of the induction principle.

LEMMA 5.2 (PPOVERFUN). Let By be a type family over
K> (G) and By a family of 1-types over Kz(G). Suppose we
have a function Yase : B1(base) — By(base) together with

o an identity Yioop(x, ) : Upase (transpP (loop(x), b)) =

transp® (loop(x), Ybase (b)) foreachx : G andb : By (base)

o forallx,y : G andb : By(base), the commuting diagram
displayed by Fig. 2.

Then we have a function ¢ : (x : K2(G)) — B1(x) — Ba(x)
such that (base) = Ypase-

Lemma 5.2 avoids the input data for loop-assoc because
the induction’s target is a 1-type. By instantiating B; with
codesy(z) and B, with base = z, Lemma 5.2 gives a sufficient
condition for building decode, namely the data Ypase, Yioop,
and Yioop-comp- Of course, we define ¥p,qe as loop. For x,y : G,
we define j0p (X, y) as the chain

loop(transp<edese (loop(x), y))

i
aPioop (transp-codes(x,y))

loop-comp(y,x)
U]

loop(y) - loop(x)

1l
behavior of transp in path families
U]

transp?~2¢=Z (|oop(x), loop(y))

Finally, we construct joop-comp (Which doesn’t show up in
[17]’s 1-dimensional setting). Let x,y,z : G. We want to
prove that the outer diagram of Fig. 3 commutes. The subdi-
agrams of Fig. 3 commute as follows: S; and S; by homotopy
naturality at transp-codes; S35 and S5 by homotopy naturality
at loop-comp; Sy by path induction; and S¢ by loop-assoc.
It remains to build a path transp-codes-coh filling S;, at
the top of Fig. 3. By unfolding S7, we see that this path fills
Fig. 4: the image under ap),,,, of a diagram D of paths in G.
Thus, it suffices to fill D. The bottom left corner of D fits
into the commuting square Fig. 5. After using this square
to rewrite D, we rewrite the three paths making up the top


https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Deloop/Codes.agda#L20
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/2Grps/PostMultMap.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Deloop/Codes.agda#L60
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Deloop/Codes.agda#L75
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Deloop/Decode0.agda#L51
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Deloop/Decode-def.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Deloop/Decode-def.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/HoTT-Agda/core/lib/cubical/PPOverFun.agda
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PB-rule for coe at post-mult(x ® y)

coe({map(x ® ), 2)

i
{map respects tensor product

z® (x®y)

associativity of ®

Perry Hart and Owen Milner

I
Coe(évmap (x) - §map(y), z) (z®@x)®Y

1
coe respects composition

coe(gmap (y), Coe(gmap (x)a Z))

1
p-rule for coe at post-mult(y)
1}

coe({map (1), 2 ® x)

-rule for coe at post-mult(x)
Figure 1: coherence property of final path in transp-codes for all x,y,z : G

Ybase (transp® (loop (x ® y), b))

via IOOPW W)

Ybase (transp® (loop(x) - loop(y), b)) transp® (loop (x ® y), Ybase (b))

1] n
transp respects composition via loop-comp (x, y)
1]

Ybase (transp® (loop(y), transp® (loop(x), b)))

If’/\oup(y,transpﬁ‘ (|<>op(x),transp“1 (loop(x),b)))
"

transpB2 (loop(y), Ybase (b))

l/’loop{omp (X,y,b)
transpBZ(Ioop(x) ' |00P(y), ‘//base(b))

1
transp respects composition
1

transp®2 (loop(y), transp®2 (loop(x), Ypase (b))

Via Jioop (x, b)

Figure 2: coherence condition, labeled 1/i,0p-comp, for loop-comp at x, y, and b (the colors are for readability of Fig. 3)

transp respects

composttton

loop (transp©®des (loop(y), transp©®de (loop(x), z))) = loop(transp®@® (loop(x) - loop(y),z)) = loop(transp“’des‘)(loop(x®y) z))

loop(transp®des (loop(x), z) ® y)

loop (transpc®des (loop(x), z)) - loop(y)

transp2¢=Z (loop (y), loop(transp<°¢® (loop(x), z)))

/
Yioop

S,

== S3
transp2¢=%(loop(y), loop(z ® x)) =
transp®¢= (loop(y), loop(z) - l;op(x))
H s
transp2¢=% (loop(y), transp®¢=?(loop(x), loop(z)))

transp respecm

transp2¢=% (loop (x) -

ﬁ

S7

loop((z®x) ® )

loop(z ® x) - loop(y)

_z
==
-z

via loop-comp(x, y

Se

( OP(Z) loop(x)) - loop(y)

Ss

via loop-comp(x, y)

loop(z® (x ® y))

]f//\oop

loop(z) - loop(x ® y)

loop(y), loop(z)) - transpbase‘z(loop(x ® y), loop(z))

Figure 3: construction of oop-comp (%, , z), where the colors match those of Fig. 2 for readability
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loop (transp®dese (loop(x) - loop(y), z))
I
transp respects composition

loop (transp©des (loop (1), transp®de (loop(x), z)))

i
apjq0p (transp-codes( y,transp©4eso (loop(x),2)))
u

via loop-comp (x, y)
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loop (transpdes (loop(x ® y), z))

1l
apjgep (transp-codes(x®y.z))

[
loop(z ® (x ® y))

Il
associativity of ®

loop (transpc®dese (loop(x), z) ® y)

loop((z® x) ® y)

via transp-codes(x, z)

Figure 4: the diagram filled by transp-codes-coh

transp©des (loop(y), transp®de (loop(x), z))

1]
transp-codes( y,transp“’deso (loop(x),z))

via transp-codes(x, z)

hnat(transp-codes(x,z))

transp®de (loop(y), z ® x)
Il

transp-codes(y,z®x)

transp®de% (loop(x),2) ® y

(z®x)Q®y

via transp-codes(x, z)

Figure 5: rewriting transp®? (loop(x),z) ® y

right corner of D, namely transp-codes(x ® y, z):

transpCOdesO (loop(x ® ), 2)

1l
via path induction on loop(x ® y)

U]
coe(appr1 (apcodes(loop(x ® y)))’ Z)
via codes ’slllwint p-rule
U]

coe({map(x ® ), 2)

I
P-rule for coe
U]

z® (x®vy)

Call these p, p2, and py, respectively. Rewrite p; with homo-
topy naturality as in the commuting square Fig. 6. Rewrite
p2 with codes’s tensor f-rule [codes-f-mu] to get the com-
muting diagram Fig. 7. Lastly, rewrite p; with Lemma 5.1.

Now, we fill D by cancelling sets of like terms, such as
codes’s point S-rules. This completes decode. Hence loop is
an equivalence [loop-equiv].

Remark 5.3. Our delooping proof extends [6, Section 4.3],
which shows the result when G is a 1-group. The difference
between the two proofs is that when G is a 1-group,

o the target of codes is the 1-type U=’ instead of U=!
e defining transp-codes-coh is trivial as G is a set.

Our formalization is entirely separate from that of [6].

6 The loop space as a biequivalence

In this section, we make K, into a pseudofunctor, which
extends the notion of functor to bicategories. Then we use

Section 5 to show that, with K}, the loop space pseudofunctor
forms a biadjoint biequivalence between 2Type; and c2Grp.

Definition 6.1 (PsftorStr). A pseudofunctor C — D be-
tween bicategories is a function Fy : Ob(C) — Ob(D) with
e afunction F; : hom¢(a,b) — homg (Fy(a), Fy(b)) for
all a, b : Ob(C), called the action on morphisms
e a2-cell F-id, : Fi(idg) = idg,(q) for each a : Ob(C)
e a 2-cell F5(f,g) : Fi(g o f) = Fi(g) o Fi(f) for all
composable morphisms f and g
e coherence identities making F, commute with the right
unitors, the left unitors, and the associators.

Example 6.2. The loop space Q forms a pseudofunctor
2Type; — c2Grp, whose object function and action on mor-
phisms are defined as in Example 4.7. By the SIP for pointed
homotopies, we can put the action on 2-cells in an exten-
sional form 2c-actq [LoopFunctor-ap] that takes pointed
homotopies to natural isomorphisms.

LEMMA 6.3 (Q-FMAP-AP-HNAT). Let f = (fo, f»), 9 = (9o, gp)
(X,xo) — Y be maps in 2Type,. Let H := (Ho,Hp) be a
pointed homotopy f ~. g. The underlying homotopy 0y of
2c-actq(H) fits into a commuting pentagon for all p : Q(X):

On (p)

fun(Q(f))(p) fun(Q(9))(p)
typalljl_‘}—rule typall}?—rule

jor ()
St ape(p) - £ 9p" ~ap,(p) - gp

via hnam %Hp

£ (Holxo) - ap,(p) - Hoxo) ) -

for Q(g)
1


https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Deloop/Decode0.agda#L40
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Deloop/Delooping-equiv.agda#L23
https://github.com/PHart3/2-groups-agda/blob/preprint/Bicats/Bicategory.agda#L251
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/LoopFunc/LoopFunctor-ap.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/HoTT-Agda/core/lib/types/LoopSpace.agda#L175
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P1

transp<de (loop (x ® v), z)
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coe(apy, (ap yqes (loop(x ® y))). 2)

|| hnat(loop-comp(x,y)) ||

transp®°des (loop(x) - loop(y), z)

coe(apy,, (apcyqes (loop(x) - loop(y))), z)

Figure 6: rewriting p;, the path defined via path induction on loop(x ® y)

P2

appr1 (apcodes(loop(‘x ® y)))

via loop-comp(x, y)

apprl (apcodes(loop(x))) : appr1 (apcodes(loop(y)))

§ map (x ® y)
1l
{map respects tensor product

1l
Cmap (x) - Cmap (v)

via codes’s point f-rule at y

gmap (x) ’ apprl (apcodes(loop(y)))

via codes’s
point B-rule at x

Figure 7: rewriting p,, the path defined via codes’s point f-rule

Turning to K, the next two lemmas follow from its in-
duction principle. The first gives a way to build a homotopy
between two functions defined by %,-recursion, and the sec-
ond a way to prove that two such homotopies are equal. The
first lemma will be useful for defining 2-cells in 2Typeg, and
the second for proving coherence conditions on them.

LEMMA 6.4 (K-HOM-IND). Let G be a 2-group and X be a
2-type. Let f,g : K3(G) — X. Given terms

base™ : f(base) = g(base)

loop™: (x: G) — apf(loop(x)) - base™ = base™ - apg(loop(x))

loop-comp™ : loop™ commutes with G’s tensor product

we have a homotopy H : f ~ g satisfying H(base) = base™
and the following typal f-rule for all x : G:

f(base) g(base) f(base) g(base)
H hnat (loop (x)) H — H loop™ (x) H
f(base) g(base) f(base) g(base)

LEmMMA 6.5 (K-HOM2-IND). Let G, X, f, and g be as in
Lemma 6.4. Let Hi,H; : f ~ g. Suppose we have an iden-
tity base™” : Hy(base) = H,(base) and a 3-dimensional path
loop™ whose type is displayed by Fig. 8. Then we have a ho-

motopy R : Hy ~ Hj such that R(base) = base™.

Example 6.6. We equip K, : Ob(c2Grp) — Ob(2Type;)
with the structure of a pseudofunctor. Its action on mor-
phisms [K;-map] sends f : G; — G to the pointed map
defined by K-recursion on loopof : G; — Q(%K:(Gy)).
This action preserves the identity morphism [KFunctor-idf]
and composition [KFunctor-comp], with both preservation
proofs defined via Lemma 6.4. We use Lemma 6.5 to prove

coherence with unitors [KFunctor-conv-unit] and coherence
with the associator [KFunctor-conv-assoc].

As for Q, we can put K3’s action on 2-cells in an exten-
sional form 2c-actg, —defined via Lemma 6.4—that takes nat-
ural isomorphisms to pointed homotopies [ap].

Definition 6.7 (Pstransf). For pseudofunctors F : C — D
and G : D — C, a pseudotransformation F = G consists of

e for each a : Ob(C), a 1-cell &(a) : Fo(a) — Gy(a),
called a component of the pseudotransformation
o forall f: hom¢(a,b), a 2-cell & (f) filling the square

Foa) 2Y% Fy(b)

§o(a)l ls‘o(b)

Go(a) 577 Golb)

o coherence identities witnessing that &; commutes with
the unitors and with the associators.

A pseudtransformation is a pseudoequivalence if all its com-
ponents are adjoint equivalences.

Note that a pseudofunctor automatically commutes with
2-cells by homotopy naturality.

Definition 6.8 (Biequiv). A (biadjoint) biequivalence be-
tween C and D is a pseudofunctor F : C — D along with

e a pseudofunctorG: D — C
e a pseudoequivalence ¢ : Go F = id¢
e apseudoequivalence 5 : idp = Fo G


https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/KFunc/K-hom-ind.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/KFunc/K-hom2-ind.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/KFunc/KFunctor.agda#L27
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/KFunc/KFunctor-idf.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/KFunc/KFunctor-comp.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/KFunc/KFunctor-conv-unit.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/KFunc/KFunctor-conv-assoc.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/KFunc/apK.agda#L27
https://github.com/PHart3/2-groups-agda/blob/preprint/Bicats/Pstransf.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Bicats/Biequiv.agda
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Hj (base)

f(base) g(base)

f(base)

aps(loop(x)) hnat(loop(x)) ap,(loop(x)) [

I I I
f(base) g(base) f(base)

H, (base)

H;(base)

apf(loop(x)) hnat(loop(x)) apg(loop(x)) o apg(loop(x))

H;(base)
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H, (base) Hj (base)

g(base) g(base) =—— f(base) g(base)
I
via base™™ ap, (loop(x))
I I I
g(base) g(base) =——= o f(base) o g(base)

Figure 8: type of loop™™, where the operation - denotes horizontal composition of squares

e a path, called the triangulator, filling the diagram

associator

(FoG)oF Fo(GoF)
WOFH ﬂFog
ldD oF left unitor F right unitor Fo IdC

Note that the triangulator is equivalent to an invertible
modification [1, Definition 2.14], that is, a family of paths
(idp oF)y(a) = (F oid¢)y(a) that is natural in a : Ob(C).

One might wonder why Definition 6.8 omits the other
triangle identity and the swallowtail identities, which are
included in a coherent biadjunction. With fewer fields, it
makes building biequivalences easier. Also, it is equivalent,
in a coherent sense, to the one specifying all the biadjunction
data. A classical proof of Gurski’s contains such an equiv-
alence [11, Theorem 3.2], and it seems Gurski’s argument
could be ported to HoTT. Within HoTT, when C and D
are univalent (as in the scenario we care about), our short
definition is fully coherent in the following sense.

LEMMA 6.9 (BIADJEQUIV-1S-PROP). Let F : C — D be a
pseudofunctor between univalent bicategories. The type (F is
a biequivalence) is a proposition.

Proor. By univalence, both 1 and ¢ become paths. Thus,
biequivalence data on F behaves like half-adjoint equivalence
data on a function, and the latter is a proposition. O

With Lemma 6.9, we will see that our notion of biequivalence
is the same as isomorphism of bicategories (Lemma 7.3).

Returning to our desired biequivalence, the next result
gives one of the families of adjoint equivalences that Defini-
tion 6.8 requires. (Section 5 gives the other.)

Note 6.10. Let X be a pointed connected 2-type. Define the
pointed map ¢x : K2(Q(X)) —. X by Kz-recursion on the
identity 2-group morphism Q(X) — Q(X). By ¢x’s point
P-rule, the following triangle commutes [LoopK-hom]:

Q(X)
N
QX)) —gr— A0

By Section 5, loop is an equivalence, so that fun(Q(¢x)) is
one as well. Since both X and %, (Q (X)) are connected, it
follows that ¢x is an equivalence [Loop-conn-equiv].

THEOREM 6.11 (B1ADJ-BIEQUIV-MAIN). The pseudofunctors
Q and K, form a biequivalence between 2Type; and c2Grp.

Proor. We outline the four major steps of the proof.

Step 1: Construct e : Ky 0 Q = idatype;-

For every pointed connected 2-type X, define the map
EH(X)  IG(Q(X)) —. X as ¢px (see Note 6.10). Let f : X —
Y be a map in 2Type;. We want a path & (f) making the
following square commute:

7 (Q(X)) 2D g6, (Y))

& (X)\L \Lfo (Y)
X Y
f

By the SIP for pointed maps, it suffices to find a pointed ho-
motopy (Hy(f), Ha(f)) : f 0 &(X) ~. &(Y) 0 Ka(Qf)).
We define Hi(f) : fun(f) o fun(& (X)) ~ fun(&(Y)) o
fun(%:(Q(f))) by applying Lemma 6.4 to base™ = refl,
loop™ = H;(f)- loop, and loop-comp™ = H; (f)-loop-comp.
Here, H(f)- loop(p) is defined as the chain

APfun(foky (X)) (loop(p))

i
via & (X)’s point B-rule

anun( f) (p)
via &(Y)’s pomtﬁ -rule
1l

APfun(&(Y)) (IOOP(anun(f) »))

via V(Z(Q(f)l)l’s point B-rule
1]
APfun (& (v)o % (2(f))) (100P(P))

for each p : xo = xp where x; denotes the basepoint of X.
The term H; (f)-loop-comp is a routine yet long computa-
tion, and we refer the reader to its mechanization [SqKLoop-
coher]. Our definition of H;(f) makes it trivial to define
H(f), so the definition of & (f) is complete [SqKLoop].

In Section B, we prove coherence of & via Lemma 6.5.
Step 2: Construct 1) : ideagrp = Q 0 K.


https://github.com/PHart3/2-groups-agda/blob/preprint/Bicats/Biadj-beqv.agda#L71
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Deloop/LoopK-hom.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/HoTT-Agda/theorems/homotopy/Loop-conn-equiv.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Grp-Type-biequiv/Biadj-biequiv-main.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Grp-Type-biequiv/SqKLoop-aux10.agda#L75
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Grp-Type-biequiv/SqKLoop-aux10.agda#L75
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Grp-Type-biequiv/SqKLoop.agda
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For each 2-group G, define the 2-group morphism &(G) :
G — Q(¥:(G)) as loop. Let f : G; — G; be a 2-group map.
To define the path & (f), we want a natural isomorphism:

f

Gy > Gy

Ioopl I(f) \Lloop

Q(K2(G1)) Q(T(f))> Q(K,(Gz))

We define the two components of I(f) from K, (f)’s point
and tensor fS-rules, respectively [SqLoopK].

We prove that £ satisfies the relevant coherence condi-
tions. In the case of unitors, we want to prove that

. & (idg) .

QK (idg)) © &(G) == £(G) o idg
composite . .
id presle,rvation right unitor

ida(#;(6)) °60(G) == £0(6)

commutes for all 2-groups G. By the SIP for natural isos, this
square amounts to a homotopy Hi between the underlying
homotopies of the associated natural isomorphisms. For each
x : G, we define Hs(x) as the following commuting outer
diagram, where 2c-actq is as in Example 6.2:

|
oop(x) K, (idg)’s point

ap;q is identity B-rule
P-rule of Lemma 6.4

apid,Kz(G)(loop(x)) hinatyg, g, (loop(x)) anun(?(z(idG))(IOOP(x))

refl

Q(%K:(idg)) (loop(x))

c-actq (K- idg,loop(x))

refl

Q(idv(z(c))UOOP(X);

Lemma 6.3

This completes the coherence identity with the unitors [LoopK-
PT-unit]. The coherence identity with the associator is simi-
lar but more complicated [LoopK-PT-assoc].
Step 3: Prove that € and n are levelwise adjoint equivalences.
By Note 6.10, ¢ is a levelwise adjoint equivalence. By Sec-
tion 5, 7 is a levelwise adjoint equivalence.
Step 4: Construct the triangulator.
We construct an invertible modification between 5 o Q
and Q o ¢ (hiding associativity and unit terms for readabil-
ity) [Loop-zig-zag]. We first need a natural isomorphism

/Q(‘Kz(Q(X )
loopox) Q(ex)
v(X)
Q(x) T > Q00

for each pointed connected 2-type X, where ¢x is as in
Note 6.10. We define v(X) directly from ¢x’s S-rules [Loop-
279-is0]. We also need to prove v is natural in X, i.e., that
Fig. 9 commutes for every map f : X — Y in 2Type;. By

10
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the SIP for natural isos, we just need an identity between
the relevant underlying homotopies. We get one by applying
Lemma 6.3 and then the f-rule of Lemma 6.4 to the left arrow
of Fig. 9 [Loop-zz;-~]. O

Remark 6.12. In general, one can adjust the unit or counit
of an incoherent biequivalence to get the triangulator [11,
Theorem 3.2]. For us, however, this process would conceiv-
ably make the new pseudotransformation harder to work
with. For example, the components & from Steps 1 and 2
have simple forms—unlike their inverses, which would be
included in the adjusted pseudotransformation.

7 The loop space as an isomorphism

In this section, we prove that the pseudofunctor Q : 2Type; —
c2Grp is an isomorphism, i.e., an equivalence on objects and
fully faithful. We do so by proving that a pseudofunctor
between univalent bicategories is a biequivalence precisely
when it is an isomorphism. The SIP tells us that isomorphism
captures the notion of identity, so we can view this proof as
justification for our short definition of biequivalence.

Definition 7.1. Let C and D be bicategories and let F :
C — D be a pseudofunctor. We say that F is an isomor-
phism if Fy : Ob(C) — Ob(D) is an equivalence and F; :
hom¢(a, b) — homgp(Fy(a), Fy(b)) is an equivalence for all
a,b : Ob(C). We denote the type of isomorphisms by =.

LEMMA 7.2 (1s0-Bc-==-=). For all bicategories C and D, the
canonical function (C = D) — (C = D) is an equivalence.

Proor. By the SIP along with the univalence axiom. O

LEMMA 7.3 (BAE-1SO-=). A pseudofunctor of univalent bi-
categories is a biequivalence if and only if it is an isomorphism.

Proor. Let F : C — D be a biequivalence of univalent
bicategories. Since C and D are univalent, it’s easy to see that
F is an equivalence on objects. To see that F is fully faithful,
we reuse the standard proof that adjoint equivalences of
1-categories are fully faithful.

Conversely, by Lemma 7.2, it suffices to observe that the
identity pseudofunctor is a biequivalence. ]

THEOREM 7.4. The pseudofunctor Q is an isomorphism.
Proor. By Lemma 7.3 and Theorem 6.11. O

CoROLLARY 7.5 (EQUALITY-MAIN). The pseudofunctor Q
induces a path 2Typey = c2Grp.

By the same reasoning, K induces a path c2Grp = 2Type;,.

Remark 7.6. The proof that a biequivalence is fully faithful
works on the level of wild categories [9, Appendix B]. Thus, to
derive the isomorphism 2Typej = c2Grp, we use only that
Q is a pseudofunctor and that it forms a 1-coherent adjoint


https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Grp-Type-biequiv/SqLoopK.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Grp-Type-biequiv/LoopK-PT-unit.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Grp-Type-biequiv/LoopK-PT-unit.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Grp-Type-biequiv/LoopK-PT-assoc.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Grp-Type-biequiv/Biadj-data/Loop-zig-zag.agda
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via v(X)

Q(f) o Qgx) o loopg ) > Q(f)
via 2c-actq (£ (f) )l lvia v(Y)
Q(gy) 0 QK2 (Q(f))) o loopgx) ————=> Q(ey) o loopgy) oQ(f)

via £2(Q(f))

Figure 9: naturality condition for v, where ¢] and ¢ are the 2-cells—as natural isos—from Steps 1 and 2, respectively

equivalence with K. This means we can avoid most of the
hardest computations making up Theorem 6.11! But this ap-
proach puts the cart before the horse: We don’t know a priori
whether the 1-coherent equivalence is part of a biequivalence,
so the biequivalence we would get from the isomorphism—by
the general method, adapted to the univalent setting, of turn-
ing a weak equivalence into a biequivalence [16, Theorem
7.4.1]—would have a less tractable form than Theorem 6.11.

8 Delooping types

We move to our second contribution. In Section 5, we consid-
ered deloopings of types carrying the structure of a coherent
2-group—a generalization of delooping 1-groups. To classify
pointed connected 2-types by Sinh triples, we need to con-
sider a wider class of deloopings. We review some results—on
the existence and uniqueness of deloopings—to this effect.

Definition 8.1. Let X be a pointed type and let U be a
universe. The type of X-torsors is

TX = (Y : U x[Y[[x((y:Y) = X = (Y,y))
where ~, denotes the type of pointed equivalences.

THEOREM 8.2 (TORSORS.DELOOPING). Suppose the type T.X =
(r: TX) x pr(7) is contractible with center (7.(X), bx).
(1) Forallt : TX, (7 = (X)) =~ pr, (7).
(2) The pointed type (TX, 7.(X)) is a delooping of X, i.e., it
admits a pointed equivalence Q(TX) ~, X.
(3) Let Z be a pointed connected type in U. If Z is a deloop-
ing of X, then Z ~, TX.

Proor. By the proof of [32, Theorem 2]. O

Example 8.3. If X is m-connected and 2m-truncated with
m > —1, then T, X is contractible [32, Corollary 7]. For each
abelian group A and integer n > 1, recall that the Eilenberg-
MacLane space K(A, n) [17, Section 5] is (n — 1)-connected
and n-truncated and that Q(K(A,n + 1)) ~, K(A, n). Thus,
if n > 2, we have a pointed equivalence K(A,n + 1) =,
T(K(A, n)) [EM-Torsors-=].

THEOREM 8.4 ([7, THEOREM 5.1]). Ifn > 2,K(—,n) : Ab —
UZ"" =" is an equivalence of types with inverse 1,, where
UZ" =" denotes the type of (n — 1)-connected, n-truncated
pointed types in U and r, denotes the n-th homotopy group.
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COROLLARY 8.5 (EM-Q-==-exT). Let A be an abelian group
and X a pointed type. Forn > 2, K(A, n) ~, X is equivalent to
(X is (n — 1)-connected) X (X is n-truncated) X (m,(X) = A).

Proor. If X is (n — 1)-connected and n-truncated, then
(K(A,n) =X) =~ (m,(X) = A) by Theorem 8.4. O

9 Classification by Sinh triples

Let n be a positive integer. Recall that, according to the uni-
form definition of higher groups in HoTT [7], the internal
n-groups are the pointed connected n-types. So, the type of
(internal) n-groups is exactly U>"=", and UZ*=* is exactly
the type of objects of the bicategory 2Typej. In this section,
using Section 8, we classify (n + 1)-groups in terms of group
cohomology (Theorem 9.2). To begin, we decompose any
n-group into three pieces of data as follows.

LEMMA 9.1 (N-Grps-=). We have an equivalence
UZO=" =~ (B: U=""") x (F: B— U"""=") X F(ptp)

ProOF. In one direction, send an n-group G : UZ"="
to the triple §(G) = (B, F, p) defined as follows. Let B =
IIGl|,,—; with basepoint |ptG|n—l' This is connected because
truncations preserve connectedness. Let F(b) = fib_| _ (b),
the fiber of |—|,,_; over b. This is (n — 1)-connected by [29,
Corollary 7.5.8]. It is n-truncated because ¥ preserves n-types.
Letp = (ptG, refl). In the other direction, send (B, F, p) to the
pointed n-type a(B, F, p) := ((b : B) x F(b), (ptg, p)), which
is connected because X preserves connectedness.

We claim § o a ~ id. By the SIP, an identity (By, Fy, p2) =
(By, F2, p3) amounts to a tuple consisting of e : By ~, By,
t : (b:By) — Fi(b) ~ Fy(e(b)), and a coherence field
c: transsz(pte,t(ptBl,pz)) = ps. Now, let (B,F,p) be a
suitable triple. We have a composite e of pointed equiva-
lences: [|(b : B) X F(B)lu_y = (b s B) X [F(B)lly_ll,_s ~
|B]l,,—; =« B. Note that e fits into the commuting triangle

(b : B) x F(b)

|_|n71 pry

(b : B) X F(b)l],- e ”

This yields t(b,y) : fib_| _ (I(b,y)],_,) = F(y) for (b,y) :

(b : B) X F(b). As transpF(pte, t((ptB,p), ((ptB,p), refl))) =
p, we see that 5(a(B, F, p)) = (B, F, p).


https://github.com/PHart3/2-groups-agda/blob/preprint/HoTT-Agda/theorems/torsors/Delooping.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/HoTT-Agda/theorems/homotopy/EilenbergMacLane.agda#L221
https://github.com/PHart3/2-groups-agda/blob/preprint/HoTT-Agda/theorems/homotopy/EM-unique.agda#L98
https://github.com/PHart3/2-groups-agda/blob/preprint/HoTT-Agda/core/lib/types/N-groups.agda#L123
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Next, we claim @ o § ~ id. Let G be an n-group. Define e :
G — (b: [Gll,_y) X fiby—|, , (5) by e(9) = (Igl,_y. (g. ref)).
It is easy to check that e is a pointed equivalence. By the SIP
for pointed types, it follows that «(6(G)) = G. O

Let G be an n-group. In accordance with [7, Section 4.3], we
define a G-module as a family H : G — Ab of abelian groups,
which encodes an action of Q(G) on H(pt;) (in the sense of
a map into Aut(H(pts;))). The group cohomology H™ (G, H)
of G over H is the singular cohomology of G with coeffi-
cients in H, i.e., H*(G,H) = ||[(u:G) —. K(H(u),m)||,.
Here, (u : G) —. K(H(u), m) denotes the type of pointed sec-
tions of K(H(—), m): a section f : (u : BG) — K(H(u), m) of
the underlying type family together with a proof that f pre-
serves the basepoint. Its elements are also called cocycles, a
term from cohomology theory. A triple of the form (G, H, k)
with k : H""(G, H) is called a Sinh n-triple. When n = 1,
we just call it a Sinh triple. An untruncated Sinh n-triple is a
triple (G, H, k) where k : (u: G) —, K(H(u),n + 2).

THEOREM 9.2 (NGRP-SINH-=). Forn > 1, the type of (n + 1)-
groups is equivalent to that of untruncated Sinh n-triples.

Proor. It is more illuminating to start from the untrun-
cated Sinh n-triples. Let G : UZ"=". By Lemma 9.1, it suffices
to show that (H : G — Ab) X ((u : G) —« K(H(u),n + 2))
is equivalent to (X : G — U>"="1) x X(pt).

For each H : G — Ab, we use Section 8 to recast the type
of (n + 2)-dimensional cocycles on G over H. We have

(u:G) > K(H(u),n+2)
= (u:G) = T(K(H(u),n+1))
~(X:G->U)
X(d:(u:G) = Xl
X((x: X(u)) > K(H(u),n +1) =, (X(u),x)))
X (X(pte). d(pt(G))) = re(K (H(u),n +2))

By Theorem 8.2(1), (X(ptg),d(pt(G))) = t.(K(H(u),n +
2)) is equivalent to X(ptg;). By Corollary 8.5, K(H(u),n +
1) =, (X(u),x) is equivalent to (X(u) is n-connected) X
(X (u) is n + 1-truncated) X (741 (X (u), x) = H(u)). There-
fore, after rearranging types, we see that (H : G — Ab) X
((u:G) =« K(H(u),n + 2)) isequivalentto (X : G — U)X
X(ptg)x((u: G) = [IX(w)|| X Ey(u) X Ez(u))—we label this
latter type as Ag. Here, we have defined

(by Example 8.3)

Ei(u) = X(u) — (X (u) is n-connected, (n + 1)-truncated)
Ea(u) = (H : Ab) X ((x : X(u)) = 7ps1(X (1), x) = H(u))
Let u : G. First, we observe that || X (u)|| X E;(u) holds

if and only if X(u) is n-connected and (n + 1)-truncated.
Next, we claim that E;(u) is contractible as soon as X (u) is
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n-connected. Indeed, E;(u) is the type of diagonal fillers of

X(u) a1 (X (1),—) Ab

.l 8

] —mm1

Note that Ab is a 1-type, hence an n-type. If X(u) is n-
connected, the type of such fillers is contractible by virtue
of the (n-connected, n-truncated) factorization system [25].

It follows that Ag is equivalent to (X : G — U>"="*1) x
X (pts), which finishes the proof. m]

Note 9.3 (Sinh-action). Let G be an (n + 1)-group and let
(I's(G), H;(G), k5 (G)) be the untruncated Sinh n-triple pro-
duced by Theorem 9.2. We have that I,;(G) = ||G||,,, known
as the fundamental n-group II,,(G) of G. We claim that
H;(G) is the canonical action C, g of I1,,(G) on mn4+1(G),
with Cpg([1,) = Tas1 (G, %).

Indeed, the proof of Theorem 9.2 tells us that H; (G, u) =
Tns1(fibj_) (u),y) forallu : |G|, andy : fib_| (u). AsAbis
a 1-type, it suffices to show that 7,41 (fibj_| (|xl,), (x, refl)) =
7n+1(G, x) for all x : G. We do so by induction on n using ba-
sic properties of path types of a truncation [Q"'-hfib-Trunc].
It also follows easily from the long exact sequence [29, Theo-
rem 8.4.6] for the fiber sequence fib,_| (|x|,) — G — [|G]|,.

We turn to a type-theoretic version of MacLane and White-
head’s classical bijection, extended to all dimensions > 2.

THEOREM 9.4 (SINH-CLASSIF-SET). Forn > 1, the compo-
nents of (n + 1)-groups are equivalent to those of Sinh n-triples:

[wez=m|, = H(G : 1150’5”) X (H:G — Ab) x H"*Z(G,H)HO.

Proor. After applying ||—||, to Theorem 9.2, we get the
desired equivalence from the general interaction between
truncation and X-types [29, Theorem 7.3.9]. ]

By composing the equivalence Ob(c2Grp) ~ Ob(2Type})
obtained from Theorem 6.11 with Theorems 9.2 and 9.4, we
get the following characterizations of coherent 2-groups.

THEOREM 9.5 (TYPE-EQUIV-MAIN). The type of coherent 2-
groups is equivalent to the type of untruncated Sinh triples,
and the components of coherent 2-groups are equivalent to the
components of Sinh triples.

10 Conclusion and open questions

Working in HoTT, we gave two algebraic classifications of
pointed connected 2-types—the types corresponding to 2-
groups under the homotopy hypothesis. The first was a (bi-
adjoint) biequivalence between such types and coherent 2-
groups (defined as monoidal groupoids with inverses). From
this biequivalence we produced a path between these bicate-
gories via univalence. The second classification was a type
equivalence between pointed connected 2-types and Sinh


https://github.com/PHart3/2-groups-agda/blob/preprint/Sinh/Sinh-classif.agda#L35
https://github.com/PHart3/2-groups-agda/blob/preprint/Sinh/Sinh-action.agda
https://github.com/PHart3/2-groups-agda/blob/preprint/HoTT-Agda/core/lib/types/Truncation.agda#L702
https://github.com/PHart3/2-groups-agda/blob/preprint/Sinh/Sinh-classif.agda#L192
https://github.com/PHart3/2-groups-agda/blob/preprint/Two-groups/Grp-Type-biequiv/Type-equiv-main.agda
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triples (which are defined via group cohomology). Our proof
of this equivalence extended to n-groups for all n > 2.

Our work raises some open questions. First, the infinite
loop space of an abelian group G is built from K(G, 1) with
suspensions and truncations [17, Section 5]. Can we build
the double delooping of a braided 2-group and the infinite
loop space of a symmetric 2-group from % in a similar
way? We then would seek a tractable recursion principle
for the higher deloopings to build—as asserted by the homo-
topy hypothesis—biequivalences between braided 2-groups
and pointed 1-connected 3-types and between symmetric
2-groups and pointed n-connected (n + 2)-types forall n > 2.

On the Sinh-triple side, we have not classified maps of (un-
truncated) Sinh triples. We define such a map (Gy, Hy, k1) —
(G, Hy, k2) as a triple consisting of 6; : G; —. Gz, 0 :
(u:Gy) — Hi(u) —ap H(01(v)), and ¢ : K(62(-),3) o
K1 ~« K © 01 where ~, is the type of pointed homotopies
between pointed sections. Such maps form a 1-type since
the type of ¢ is 1-truncated by [7, Theorem 4.2]. Can we
complete the bicategorical structure on the Sinh triples? If
so, can we promote Theorem 9.2 to a biequivalence?
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A The short definition of 2-group
morphism

Let G; and G, be 2-groups and f; : G; — G, be a function
between their underlying types. We prove that the func-
tion (9), found in Note 4.6, is an equivalence of types. This
amounts to showing that if f; has the data Ds making up
the short definition of a 2-group morphism, then it also has
unique preservation data for id, which we call P,,, and unique
preservation data for (=)', which we call P;.!

Suppose that f; has the data D;. The data P, consists of a
pathu : id = fy(id) and commuting diagrams for each x : Gy:

_pH(x))

Jolx) =——= flx) ®id
apy (p(x)) ru(x) apg (x)e- (1)
fox®id) == fo(x) ® fo(id)
fil) 2L id o fi (x)
ap gy (A(x)) fu(x) 4oy ) (1)
filid@x) == fi(id) ® fy(x)

The only reference we have found mentioning that it’s possible to recover
P, and P; simultaneously is [10, Section 2.3]. The author, however, leaves
the proof to the reader.
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The data P; consists of a path iy : fo(x)™! = fo(x™!) and
commuting diagrams for each x : G:
( *(lx ”xx_l
Jo(x) ® fo(x)™ W fitx) ® fo(x™! fitxex™)
l
rinv(fo (x)) ri(x) apg, (rinv(x))
| Il
id = Jo(id)
ap_g (x)(lx ”x‘l,x
™ filx) = flx™) @ fiolx) ftx®x)
| Il
linv(fo(x)) £(x) apy (linv(x))
| Il
id = Jo(id)

Both fy(x) ® — : G — Gz and — ® fy(x) : G, — G, are
equivalences of types [mu-pre-iso and mu-post-iso]. Thus,
we have a unique choice of u satisfying r, (id). Moreover, we
have a unique choice irigh; of i satisfying r; and, separately, a
unique choice ijef of i satisfying ¢;.

We first recover P,,. Let x : G;. As £, and r, are families
of propositions, it suffices to prove our choice of u satisfies
£,(x) and r, (x). First, we show that r,, (id) implies £, (x) [rho-
to-lam]. Second, we show that £, (x) implies r,(x) [lam-to-
rho], so that r,(id) implies both r,(x) [rhoid-to-rho] and
£, (x). The formal proofs of both steps give the details with
explicit equational reasoning, which largely matches a pen-
and-paper proof thanks to Agda’s instance search.

It remains to recover P;. To do so, we take iyjght and show
that it satisfies ¢; in the presence of P,,, which we have already
recovered. (We could switch the roles of r; and ¢;.) We refer
the reader to either our mechanized proof [rinv-to-linv] or
[4, Theorem 6.1] for the details.

Remark A.1. By keeping track of indices of hom-types,
it’s easy to extend our proof to pseudofunctors of (locally
univalent) bigroupoids [22]. (A 2-group is a single-object
bigroupoid.) This means that a pseudofunctor F : 8 — C of
bigroupoids is simply a 2-semifunctor [6, Chapter 5], which
consists of a function Fy : Ob(8) — Ob(C), an action
F; : homg(a,b) — homg(Fy(a), Fy(b)) on 1-cells, and a
family of 2-cells F.(f,g) : Fi(g o f) = Fi(g) o Fi(f) that
respects the associator.

B Coherence conditions for Step 1 of
Theorem 6.11

We verify that &; satisfies the relevant coherence conditions.
In the case of unitors, we want to prove that the following
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Classifying 2-Groups in Homotopy Type Theory

square commutes for each pointed connected 2-type X:

. &1 (idx) .
idx o&(X) === &(X) o K(Q(idx))
left unitor composite id preservation
S(X) o= §0(X) 2 idyg (a(x)

By the SIP for pointed homotopies, this amounts to a ho-
motopy M; (X) between the homotopies underlying the 2-
cells in the square along with a dependent path M,(X) over
M;(X) between the corresponding proofs of pointedness.
We define M; (X) by applying Lemma 6.5 to base™ := refl
and loop™ = M;(X)- loop. Here, for each loop p : x¢ = xo,
M; (X)-loop(p) is a path between two homotopy-naturality
squares at loop(p)—call them NatSq; and NatSq;, as in Fig. 10.
Each of the upper three (hence bottom three) paths of the
upper square in Fig. 10 reduces to refl by the base compu-
tation rule of %;,-induction. To build M; (X)- loop(p), we
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use Lemma 3.2 to decompose NatSq; into three paths L, (p),
Ly(p), and Ls(p) corresponding to the three homotopy natu-
rality sub-squares shown in Fig. 10, from left to right [KLoop-
ptr-idf-aux1]. By the typal f-rule of Lemma 6.4, these paths
fit into the trio of commuting diagrams in Fig. 11 (which
are mechanized at [KLoop-ptr-idf-aux0]). We further adjust
L;(p) by rewriting the middle path

Pidgx) (p) = APfun(£ (X)) (loop(aPidQ(x) (»))

of H;(f)- loop(p) via homotopy naturality as in Fig. 12. Now,
notice that NatSq, is trivial. Thus, we can derive M; (X)- loop(p)
by proving the composition of Ly (p), L2(p), and Ls(p) is triv-
ial. We do so by repeatedly cancelling point -rules [KLoop-
ptr-idf-coher]. Finally, our definition of M;(X) makes it triv-
ial to define M, (X), thereby completing the coherence with
the unitors [KLoop-coher-unit]. The coherence with the as-
sociator is similar but more complicated [KLoop-PT-assoc].
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H; (idx,base)

base

APfun(£) (X)) (loop(p))

via 2c-acty, (Q-idx, base)

Perry Hart and Owen Milner

id preservation of K,

base base
1l 1l
1 1
I I

:: NatSq; (outer rectangle) ::
1] 1]

base

aPfun(gy(x)) (loop(p))

base base base base
H, (idx,base) via 2c-actg;, (Q-idx, base) id preservation of K,
fl
base = base
aPfun(gy (x)) (loop(p)) NatSq; aPfun(gy(x)) (loop(p))
base base
refl

Figure 10: type of M;(X)-loop(p), where 2c-acty, is as in Example 6.6 (Note: NatSq; fills the outer diagram.)

APfun(idx o0& (X)) (loop(p))

APfyn (& (X)o %k, (Q(idx ))) (100P (D))

Pun (& (X)) (@Pfun (%, (idox) ) (100P(P)))

Li(p)
//_\

_——
Hy(f)-loop(p)

via K, (Q(idx)) ’s point B-rule

APfun (£ (X)o%; (Q(idx))) (loop(p))

APfun(& (X)) (loop(p))

via K (idg(x)) ’s
point B-rule

aPfun(& (X)) (APfun (%, (idg ) )) (100P(P)))

L3 (p)
/A

V/

via K (ido(x)) ’s point B-rule

aPfun (g (x)) (Ioop(p))

Figure 11: rewriting L, (p), L2(p), and Ls(p), respectively

aPidg x) (?)

& (X)’s point

p-rule atapy,  (p)

APfun(& (X)) (|00P(3Pidg(x) »))

ap,qy is identity

ap,qy is identity

p

& (X)’s point
P-rule at p

aPfun (& (x)) (100p(p))

Figure 12: rewriting the middle path of H;(f)- loop(p)
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