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Abstract
Under the homotopy hypothesis, higher dimensional groups

are defined as pointed homotopy types whose homotopy

groups vanish outside a certain range. In particular, a 2-
group is a pointed connected homotopy 2-type. Classically,

2-groups have two equivalent algebraic descriptions: one in

terms of weak monoidal categories and the other in terms of

group cohomology. We present these two classifications of

pointed connected 2-types in homotopy type theory, thereby

providing internal, constructive counterparts to the tradi-

tional classifications of 2-groups. Our first classification (in

terms of monoidal categories) takes the form of a bicate-

gorical equivalence, while our second is a type equivalence

that extends to 𝑛-groups for all integers 𝑛 ≥ 2. We have

mechanized our results in Agda.

CCS Concepts
• Theory of computation → Type theory; Constructive
mathematics; Logic and verification; •Mathematics of com-
puting→ Algebraic topology.

Keywords
homotopy type theory, synthetic homotopy theory, 2-group,

higher inductive type, bicategory, higher group, cohomology

1 Introduction
Groups are fundamental to modern algebra. By treating a

group’s equational laws as isomorphisms in a category so

that multiplication is a monoidal product and inverses are

adjoint equivalences, we arrive at a coherent 2-group, the 2-
dimensional generalization of a group. The study of coherent

2-groups has a fruitful history spanning algebraic topology

and mathematical physics [4, 5, 23]. From the perspective

of homotopy theory, coherent 2-groups fit into a layered

correspondence, known as the homotopy hypothesis, between
spaces and higher dimensional groupoids [3]. The homotopy

hypothesis provides a uniform definition of higher groups in

homotopy type theory (HoTT) [7]. Following [20], we call

this definition the internal notion of higher group. It lets

us apply the tools of synthetic homotopy theory directly
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to group theory at any dimension. In dimension one, this

application has led to simpler, fundamentally new proofs

of important group-theoretic results [7, 15, 27], such as the

Nielsen-Schreier theorem. The application in dimension two

is just beginning [28].

This paper makes two principal contributions—which we

discuss now—to higher group theory in HoTT, with each

shedding new light on the internal notion of higher group.

The homotopy hypothesis asserts that this internal no-

tion (as a space) is equivalent to the axiomatic notion (as a

groupoid). In the 1-dimensional case, the latter is the usual

set-theoretic definition of a (possibly abelian) group. In this

case, we can prove the homotopy hypothesis in HoTT. In

particular, applying the loop space to a pointed connected 1-

type—the internal notion of a 1-group—forms an equivalence

between the 1-category of such types and the 1-category of

axiomatic groups [7, Theorem 5.1], with the functor in the re-

verse direction forming the delooping of an axiomatic group.

This equivalence is useful for group theory in HoTT as we

can integrate two kinds of proofs: those about internal groups

developed with synthetic homotopy theory and those about

axiomatic groups developed in the set-theoretic setting.

It’s natural to ask for a similar equivalence between the

internal and axiomatic notion above dimension one. We have

lacked one, however, as the higher structure makes even the

2-dimensional case far harder. Buchholtz, van Doorn, and

Rijke conjecture that the 2-dimensional case is provable in

HoTT [7, Section 9]. In classical homotopy theory, Baez and

Lauda conjecture the basic 2-dimensional case, i.e., for the

spaces sitting at the first connectivity level [4, Section 8.2].

Our first contribution settles the basic 2-dimensional case

in HoTT: Working in HoTT [29], we show that applying

the loop space to a pointed connected 2-type (the internal

notion of 2-group) forms a (biadjoint) biequivalence [11, Defi-
nition 2.3] between the (2, 1)-category of such types and the

(2, 1)-category of coherent 2-groups (the axiomatic notion

of 2-group). To this end, we formulate a notion of biequiv-

alence that is simpler than the traditional one but still, for

univalent bicategories, equivalent to identity. As a result,

the biequivalence we build is equivalent to a path between

these (2, 1)-categories, so that one can easily transfer any

bicategorical property between them.

The biequivalence we build extends the preceding equiva-

lence constructed for 1-groups. It has two main stages. First,
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we form the delooping of a coherent 2-group 𝐺 as a higher

inductive type that generalizes the delooping of a group due

to Licata and Finster [17]. Intuitively, the delooping is the

smallest pointed 2-type 𝑇 admitting a 2-group morphism

from𝐺 to 𝑇 ’s loop space Ω(𝑇 ), which turns out to be an iso-

morphism by minimality. The delooping defines a map from

the type of coherent 2-groups to that of pointed connected

2-types. Second, we make this map into a pseudofunctor (a
bicategorical functor) and prove that it forms a biequivalence

with the loop pseudofunctor Ω.
We now see that the loop space Ω(𝑋 ) of a pointed con-

nected 2-type 𝑋 preserves all information in a bicategorical

sense. What if we only have access to the fundamental group

𝜋1 (𝑋 ) := ∥Ω(𝑋 )∥
0
of 𝑋? Unsurprisingly, we need more in-

formation to classify 𝑋 , but how much more? In classical

homotopy theory, MacLane and Whitehead showed 𝑋 is de-

termined by 𝜋1 (𝑋 ), the canonical action of 𝜋1 (𝑋 ) on 𝜋2 (𝑋 ),
and a group cohomology class in 𝐻 3 (𝜋1 (𝑋 ), 𝜋2 (𝑋 )) called
the Postnikov invariant of 𝑋 [19]. These three pieces of data

make up a Sính triple (named after Hoàng Xuân Sính), which

consists of a group 𝐺 , a 𝐺-module 𝐻 , and a cohomology

class 𝜅 ∈ 𝐻 3 (𝐺,𝐻 ). MacLane and Whitehead’s classification

arises from a set-theoretic bijection—which we call the MW
bijection—between the pointed connected 2-types and the

isomorphism classes of Sính triples. In HoTT, the pointed

connected 2-types form not a set but a 2-type. How, then,

can we turn the MW bijection into a type equivalence?

Our second contribution answers this question with an

equivalence between the type of pointed connected 2-types

and the type of untruncated Sính triples—triples as before but
with 𝜅 as a cocycle (an element of the relevant untruncated

mapping space) rather than cohomology class (which lives in

the set-truncated space). Moreover, by taking the set trunca-

tion of this equivalence, we recover the MW bijection—here

between the (connected) components (equivalently, mere
isomorphism classes) of pointed connected 2-types and the

components of Sính triples. We thus recover the Postnikov

invariant of a pointed connected 2-type. Our type equiva-

lence stems from general results about deloopings of types

and so yields a substantially different proof of the MW bijec-

tion from MacLane and Whitehead’s. In particular, ours is

constructive and works in dimension two and above.

Indeed, our equivalence is uniform in dimension 𝑛, as one

between the pointed connected (𝑛 + 1)-types—i.e., internal
(𝑛 + 1)-groups—and the untruncated Sính 𝑛-triples for 𝑛 ≥ 1.

It sends an internal (𝑛 + 1)-group 𝑋 to the triple consisting

of𝑋 ’s fundamental internal𝑛-groupΠ𝑛 (𝑋 ), the canonical ac-
tion of Π𝑛 (𝑋 ) on 𝜋𝑛+1 (𝑋 ), and an invariant of 𝑋 in the form

of an (𝑛 + 2)-dimensional cocycle on Π𝑛 (𝑋 ) over 𝜋𝑛+1 (𝑋 ).
With our first classification of pointed connected 2-types

(from the biequivalence), we get a bijection between the com-

ponents of coherent 2-groups and those of Sính triples. The

Postnikov invariant produced for a 2-group 𝐺 by this com-

posite equivalence is traditionally called the Sính invariant
of 𝐺 , and ours is the first construction of it in type theory.

Outline. We consider our two contributions in turn, start-

ing with the biequivalence. We first review basic notions

of bicategory theory while focusing on the (2, 1)-category
of pointed connected 2-types and that of coherent 2-groups

(Section 4). Afterward, we outline the computations involved

in the two stages of the biequivalence between them (Sec-

tions 5 and 6). We deduce from the biequivalence an identity

between the two (2, 1)-categories via univalence (Section 7).

For our second contribution, we begin by reviewing some

key results on deloopings of types (Section 8). With these

results, we construct, for each 𝑛 ≥ 1, an equivalence between

the type of internal (𝑛 + 1)-groups and that of untruncated

Sính 𝑛-triples (Section 9). We then derive a bijection between

the components of internal (𝑛 + 1)-groups and the compo-

nents of Sính 𝑛-triples, where the cocycle is replaced by a

cohomology class, as in the MW bijection.

Agda formalization. This paper can serve as a roadmap for

our Agda codebase [12], which is completely self-contained

and formalizes our entire development. Hyperlinks to the

code will be blue and in brackets. Besides our new results, the

codebase includes important theorems from [7, 32], offering

the first, to our knowledge, Agda formalization of [7]’s higher

delooping theorem for abelian groups.

To check the biequivalence, Agda needs a lot of time and

memory despite our careful engineering of the code. Part of

this high computational cost highlights a major difference

between our type system—Book HoTT—and cubical type the-

ory [2, 31]: Cubical has definitional 𝛽-rules for path construc-

tors in higher inductive types (HITs), which greatly simplifies

the biequivalence by erasing many postulated equalities that

we must handle. Although constructions with HITs tend to

be much harder in Book HoTT [21], they have value in this

setting. Book HoTT has models in all (∞, 1)-toposes [18, 26],
whereas it’s not known whether the type theory underlying

Cubical Agda has a model Quillen equivalent to the category

of spaces. Moreover, cubical is an extension of Book HoTT [2,

Section 2.16], so we can interpret our results into it.

2 Related work
Baez and Lauda introduced the notion of a coherent 2-group

in the language of classical category theory [4, Section 3]. In

HoTT, Veltri and van der Weide internalized its definition as

an example of an algebra over a signature [30, Section 7.4]

and thereby proved the bicategory of coherent 2-groups is

univalent (of which we give a direct proof in Section 4). Baez

and Lauda gave—without passing through spaces—a mod-

ern proof that coherent 2-groups are in bijection with Sính
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triples [4, Corollary 8.3.8], a result they trace to Sính’s PhD

thesis. Unlike ours, their proof is non-constructive. They take

the skeleton S of an arbitrary coherent 2-group’s underlying

category, and the existence of S requires choice [14].

Noohi provides a different but closely related classical

classification of pointed connected 2-types [23, Proposition

6.1]. He considers the category 2Gp of strict 2-groups with

weak equivalences those maps 𝐺1 → 𝐺2 inducing isomor-

phisms on the group of isomorphism classes 𝜋0 (−) and the

automorphism group Aut

(
𝑒 (−)

)
. He proves the nerve of a

2-category 𝑁 : 2Cat → sSet induces a 1-categorical equiva-
lence between Ho(2Gp) and the pointed connected 2-types.

Additionally, Baez and Lauda prove that strict 2-groups

are classified by crossed modules, which are pairs of related

groups—a concept that also is central to MacLane and White-

head’s proof. In HoTT, Buchholtz and Schipp von Branitz

show that the type of strict 2-groups is equivalent to that of

crossed modules [8]. They also conjecture that, with the sets
cover 1-types axiom, coherent 2-groups can be strictified.

3 Background on type theory
We assume the reader is familiar with HoTT as in [29], in

which our work takes place. This system extends Martin-

Löf type theory with the univalence axiom and HITs. For

convenience, we review a few basic constructions in HoTT.

But first, a remark on notation: We use (𝑎 : 𝐴) → 𝐵(𝑎) for
the type

∏
𝑎:𝐴 𝐵(𝑎) and (𝑎 : 𝐴) ×𝐵(𝑎) for the type∑𝑎:𝐴 𝐵(𝑎).

The first construction is the function ap𝑓 : (𝑥 = 𝑦) →
(𝑓 (𝑥) = 𝑓 (𝑦)) defined by path induction for all functions

𝑓 : 𝑋 → 𝑌 and 𝑥,𝑦 : 𝑋 . (We use = for the identity/path type

and ≡ for definitional equality.)

Lemma 3.1 (Homotopy naturality). Let 𝑓 , 𝑔 : 𝑋 → 𝑌 .
For all 𝑥,𝑦 : 𝑋 , 𝑝 : 𝑥 = 𝑦, and 𝐻 : 𝑓 ∼ 𝑔, the square

𝑓 (𝑥) 𝑔(𝑥)

𝑓 (𝑦) 𝑔(𝑦)

𝐻 (𝑥 )

ap𝑓 (𝑝 ) ap𝑔 (𝑝 )

𝐻 (𝑦)

commutes. We denote the path witnessing that this square
commutes by hnat𝐻 (𝑝), but for brevity we may hide 𝐻 and
refer to the path as homotopy naturality at 𝑝 .

Here, 𝑓1 ∼ 𝑓2 := (𝑥 : 𝑋 ) → 𝑓1 (𝑥) = 𝑓2 (𝑥) for any 𝑓1, 𝑓2 :

(𝑥 : 𝑋 ) → 𝑌 (𝑥), called the type of homotopies between 𝑓1
and 𝑓2. We compose homotopies 𝐻1 ∗ 𝐻2 by pointwise path

composition. Homotopy naturality respects composition.

Lemma 3.2. Let 𝑓 , 𝑔, ℎ : 𝑋 → 𝑌 ,𝐻1 : 𝑓 ∼ 𝑔, and𝐻2 : 𝑔 ∼ ℎ.
For all 𝑥,𝑦 : 𝑋 and 𝑝 : 𝑥 = 𝑦, we have a path

𝑓 (𝑥) ℎ(𝑥) 𝑓 (𝑥) 𝑔(𝑥) 𝑔(𝑥) ℎ(𝑥)

𝑓 (𝑦) ℎ(𝑦) 𝑓 (𝑦) 𝑔(𝑦) 𝑔(𝑦) ℎ(𝑦)

hnat𝐻
1
∗𝐻

2
(𝑝 ) hnat𝐻

1
(𝑝 ) • hnat𝐻

2
(𝑝 )

where • denotes horizontal composition of squares.

The second construction is the transport function transp𝑌 :

(𝑥,𝑦 : 𝑋 ) → (𝑥 = 𝑦) → 𝑌 (𝑥) → 𝑌 (𝑦) for any type family

𝑌 over 𝑋 . This is defined by path induction.

The final construction is the 𝑛-truncation ∥−∥𝑛 HIT for

each integer 𝑛 ≥ −2, an operation on types. (When 𝑛 = −1,
wewrite ∥−∥.) For any type𝑋 , we have a function |−|𝑛 : 𝑋 →
∥𝑋 ∥𝑛 . Further, ∥𝑋 ∥𝑛 is 𝑛-truncated, or an 𝑛-type, a notion
defined recursively: a type is −2-truncated if it’s contractible

(i.e., equivalent to the unit type 1) and (𝑛 + 1)-truncated if

all of its identity types are 𝑛-truncated. We call the unique

element of a contractible type its center. We call −1-types
propositions and 0-types sets. For example, the type (𝑋 is an
𝑛-type ) is a proposition. Finally, 𝑋 is 𝑛-connected if ∥𝑋 ∥𝑛 is

contractible. It is connected if it’s 0-connected. We call ∥𝑋 ∥
0

the type of (connected) components of 𝑋 .

4 Bicategories
To give our first classification of internal 2-groups, we need to

discuss bicategories. For us, bicategory means (2, 1)-category
whose 2-cells (maps between maps) are paths. This definition

is a special case of the standard one, in which 2-cells are just

assumed to be elements of a family of sets [1, Definition 2.1].

Definition 4.1 (BicatStr). A bicategory consists of a type

Ob of objects and

• a family hom of 1-types twice indexed over Ob, whose
elements are called morphisms, maps, or 1-cells

• a composition operation ◦ : hom(𝑏, 𝑐) → hom(𝑎, 𝑏) →
hom(𝑎, 𝑐) for all 𝑎, 𝑏, 𝑐 : Ob

• an identity map id𝑎 for each 𝑎 : Ob along with a right
unitor and a left unitor : two 2-cells witnessing that id𝑎
is a right unit and a left unit, respectively, for ◦

• an associator 2-cell witnessing that ◦ is associative and
satisfying the triangle and pentagon identities.

Remark 4.2. A bicategory as in Definition 4.1 is equivalent

to a locally univalent bicategory in the sense of [1, Definition

3.1] all of whose 2-cells are invertible.

Definition 4.3 (Adjequiv). Let C be a bicategory. Let 𝑎, 𝑏 :

Ob(C) and 𝑓 : homC (𝑎, 𝑏). We say that 𝑓 is an adjoint
equivalence if we have a morphism 𝑔 : homC (𝑏, 𝑎), 2-cells
𝜂 : id𝑎 = 𝑔 ◦ 𝑓 and 𝜖 : 𝑓 ◦ 𝑔 = id𝑏 , and two zig-zag identities.

We denote the type of adjoint equivalences by AdjEquiv.
3
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Note that the data of an adjoint equivalence on a morphism

is a proposition [Adjequiv-is-prop], not extra structure.

Example 4.4. We have the bicategory 2Type∗0 of pointed
connected 2-types and pointed maps [Ptd-bc]. Its hom-types

are 1-truncated by [7, Corollary 4.3].

Example 4.5. We have the bicategory c2Grp of (coherent)
2-groups [2Grp-bc]. A 2-group is defined as a (univalent)

monoidal groupoid where, from the viewpoint of a monoidal

groupoid as a single-object bicategory, every object is an

adjoint equivalence. Explicitly, given a universeU, a 2-group
(inU) [CohGrp] is a 1-type 𝐺 inU along with

• a basepoint id, called the unit of 𝐺
• an operation ⊗ : 𝐺 → 𝐺 → 𝐺 , called the tensor
product of 𝐺

• a right unitor 𝜌 , left unitor 𝜆, and associator 𝛼 that

together satisfy the triangle and pentagon identities

• an inverse operation (−)−1 : 𝐺 → 𝐺

• families of paths linv𝑥 : 𝑥−1 ⊗ 𝑥 = id and rinv𝑥 :

𝑥 ⊗ 𝑥−1 = id related by the zig-zag identities.

A 2-group morphism 𝐺1 → 𝐺2 is a function 𝑓0 : 𝐺1 → 𝐺2

equipped with a family of paths 𝜇𝑥,𝑦 : 𝑓0 (𝑥 ⊗ 𝑦) = 𝑓0 (𝑥) ⊗
𝑓0 (𝑦) that respects the associator [CohGrpHomStr].

Note 4.6. Our notion of 2-group morphism is surprisingly

short: a coherent map of the underlying semigroups. The cor-

rect notion must ensure that the map of underlying types pre-

serves all the 2-group data [CohGrpHomStrFull]. To justify

our short definition, we prove that for eachmap 𝑓0 : 𝐺1 → 𝐺2

of the underlying types of 2-groups, the forgetful function

fully explicit notion on 𝑓0 → short notion on 𝑓0 (𝜕)

is an equivalence [2GrpHomEq]. We outline the proof in

Section A. The short definition is highly valuable (especially

for the formalization) as it lets us define the delooping of a 2-

group𝐺 as a HITK2 (𝐺) with fewer constructors (Section 5),

thereby making induction on K2 (𝐺) far simpler.

The structure identity principle (SIP) [24, Theorem 11.6.2]—

a general theorem characterizing identity types of Σ-types—
implies that a 2-cell between 2-group morphisms 𝑓 , 𝑔 : 𝐺1 →
𝐺2 is equivalent to a (monoidal) natural isomorphism (or iso)
between them: a homotopy fun(𝑓 ) ∼ fun(𝑔) of the under-
lying functions with a proof it commutes with the tensor

product. For example, we build the unitors and associator

for c2Grp via natural isomorphisms [2SGrpMap].

Example 4.7 (Hmtpy2Grp). For every pointed 2-type 𝑋 ,

the loop space Ω(𝑋 ) :=
(
pt𝑋 = pt𝑋

)
equipped with path

composition is a 2-group, called the fundamental 2-group of

𝑋 . For each map 𝑓 :=
(
𝑓0, 𝑓𝑝

)
: 𝑋 →∗ 𝑌 of pointed 2-types,

we have a 2-group morphism Ω(𝑓 ) : Ω(𝑋 ) → Ω(𝑌 ) defined
by induction on the path 𝑓𝑝 .

As the next two examples show, not all 2-groups are de-

fined directly as loop spaces, even though our main result,

Theorem 6.11, implies all 2-groups are equivalent to them.

Example 4.8. For any bicategory C and 𝑋 : Ob(C), the
type of adjoint autoequivalencesAdjEquiv(𝑋,𝑋 ) is a 2-group
under composition of 1-cells [Aut-adj-2G]—the automor-
phism 2-group on 𝑋 . If C is the bicategory of 1-types in a uni-

verse, then AdjEquiv(𝑋,𝑋 ) is the type of self-equivalences
on 𝑋 , and the function univ : (𝑋 ≃ 𝑋 ) → (𝑋 = 𝑋 ) coming

from univalence is a 2-group morphism [ua-2SGrpMap].

Example 4.9. The full subcategory of a monoidal groupoid

C on the adjoint equivalences is a 2-group under C’s tensor
product, known as the Picard 2-group of C [13, Section 7].

We end this section with the variant of univalence for

bicategories. As we’ll see, this property interacts nicely with

our concise definition of biequivalence (Definition 6.8).

Definition 4.10 ([1, Definition 3.1]). A bicategory C is (glob-
ally) univalent if the canonical function (𝑎 = 𝑏) → AdjEquiv(𝑎,𝑏)
is an equivalence for all 𝑎, 𝑏 : Ob(C).

Lemma 4.11 (AdjEq-exmps). Both 2Type∗0 and c2Grp are
univalent bicategories.

Proof. We factor through the SIP, which states that 𝑎 = 𝑏

is equivalent, by sending refl𝑎 to id𝑎 , to isomorphisms 𝑎 → 𝑏,

i.e., maps whose underlying functions are equivalences. □

5 Delooping a 2-group
The Eilenberg-MacLane space𝐾 (𝐻, 1) of an (axiomatic) group

𝐻 [17, Section 3], also called the classifying space of 𝐻 , is
the 1-truncated HIT generated by base : 𝐾 (𝐻, 1), loop :

𝐻 → base = base, and a term loop-comp witnessing that

loop is a group map 𝐻 → Ω(𝐾 (𝐻, 1)). Let U be a uni-

verse and 𝐺 be a 2-group inU. Define the classifying space
of 𝐺 as the 2-truncated HIT K2 (𝐺) generated by base :

K2 (𝐺), loop : 𝐺 → base = base, and two path constructors

loop-comp and loop-assoc that make loop a 2-group map

𝐺 → Ω(K2 (𝐺)) [Delooping]. An easy consequence of K2’s

induction principle is that K2 (𝐺) is connected [K2-is-conn].

The recursion principle for K2, which we derive from

the induction principle, states that K2 (𝐺) is initial in the

category of pointed 2-types 𝑋 ∗
equipped with a 2-group

morphism 𝐺 → Ω(𝑋 ∗). Explicitly, for every pointed 2-type

𝑋 ∗
:= (𝑋, 𝑥0) together with a 2-group morphism 𝜑𝑋 ∗ : 𝐺 →

Ω(𝑋 ∗), we have a function 𝑀𝜑 : K2 (𝐺) → 𝑋 that satisfies

𝑀𝜑 (base) ≡ 𝑥0 and is equipped with a natural isomorphism:

𝐺

Ω(K2 (𝐺)) Ω(𝑋 ∗)

loop 𝜑𝑋 ∗

Ω (𝑀𝜑 )

(𝜌𝜑 ,𝜌𝜑)
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We call 𝜌𝜑 the point 𝛽-rule and 𝜌𝜑 the tensor 𝛽-rule for𝑀𝜑 .

A delooping of a group 𝐻 is a pointed type 𝐵 equipped

with a group isomorphism𝐻 → Ω(𝐵). An essential property
of 𝐾 (𝐻, 1) is that loop makes it a delooping of 𝐻 . We want

to prove that, likewise, loop makes K2 (𝐺) a delooping of 𝐺 ,

i.e., that loop is an equivalence of types. (In this case, we can

easily show it’s the unique delooping by K2 (𝐺)’s recursion
principle.) To this end, we adapt the encode-decode proof

used for 𝐾 (𝐻, 1) [17, Theorem 3.2] to the 2-dimensional case.

We define codes : K2 (𝐺) → U≤1
by recursion on K2 (𝐺)

so that pr
1
(codes(base)) ≡ 𝐺 [codes], where U≤1

denotes

the 2-type of all 1-truncated types inU. Since𝐺 is 1-truncated

by definition, we take it as the basepoint of U≤1
. To con-

struct codes, we want a 2-groupmorphism 𝜁 : 𝐺 → Ω(U≤1).
Define 𝜁map : 𝐺 → (𝐺 =𝐺) by mapping 𝑔 to the type equiv-

alence post-mult(𝑔) : 𝐺 ≃−→ 𝐺 defined by post-mult(𝑔, 𝑥) :=
𝑥 ⊗ 𝑔 and then applying univ to it. Both post-mult and

univ are 2-group morphisms (see [PostMultMap] and Ex-

ample 4.8, respectively), and we give 𝜁map the composite

of their morphism structures. Now, consider the projection

codes0 := pr
1
◦ codes : K2 (𝐺) → U. Define

encode : (𝑧 : K2 (𝐺)) → base = 𝑧 → codes0 (𝑧)
encode𝑧 (𝑝) := transpcodes0 (𝑝, id𝐺 )

This yields encodebase : Ω(K2 (𝐺)) → 𝐺 [encode].

We want to show that loop : 𝐺 → Ω(K2 (𝐺)) is an equiv-

alence with inverse encodebase. As in [17], encodebase is a

left inverse of loop [encode-loop]. The main ingredient for

the proof of this claim is the following chain of paths for all

𝑥,𝑦 : 𝐺 , which we denote by transp-codes(𝑥,𝑦):

transpcodes0 (loop(𝑥), 𝑦)

coe(appr
1

(apcodes (loop(𝑥))), 𝑦)

coe(𝜁map (𝑥), 𝑦)

𝑦 ⊗ 𝑥

via path induction on loop(𝑥 )

via codes’s point 𝛽-rule

(typal) 𝛽-rule for coe

where coe : (𝐴 = 𝐵) → (𝐴 ≃ 𝐵), defined by path induction,

is the inverse of univ and thus has a 𝛽-rule. This chain is also

important for the next part of the proof, so we record the

following coherence property satisfied by its final path.

Lemma 5.1 (coe-𝛽-mu). Figure 1 (below) commutes.

Next, we show that encodebase is a right inverse of loop.
We want a homotopy ri : loop ◦ encodebase ∼ idΩ (K2 (𝐺 ) ) . We

will define decode : (𝑧 : K2 (𝐺)) → codes0 (𝑧) → base = 𝑧

by induction onK2 (𝐺) so that decode(base) ≡ loop. By path

induction, we then see that decode𝑧 (encode𝑧 (𝑝)) = 𝑝 for all

𝑧 : K2 (𝐺) and 𝑝 : base = 𝑧 because every 2-group morphism

preserves the unit. This gives us ri by setting 𝑧 to base.
We now describe the construction of decode [Decode-

def], which is much more complex than the 1-dimensional

case. Here, the target of the induction is the function type

codes0 (𝑧) → base = 𝑧 for all 𝑧 : K2 (𝐺). In such a situation,

we have the following form of the induction principle.

Lemma 5.2 (PPOverFun). Let 𝐵1 be a type family over
K2 (𝐺) and 𝐵2 a family of 1-types over K2 (𝐺). Suppose we
have a function𝜓base : 𝐵1 (base) → 𝐵2 (base) together with

• an identity 𝜓loop (𝑥, 𝑏) : 𝜓base (transp𝐵1 (loop(𝑥), 𝑏)) =
transp𝐵2 (loop(𝑥),𝜓base (𝑏)) for each𝑥 : 𝐺 and𝑏 : 𝐵1 (base)

• for all 𝑥,𝑦 : 𝐺 and𝑏 : 𝐵1 (base), the commuting diagram
displayed by Fig. 2.

Then we have a function𝜓 : (𝑥 : K2 (𝐺)) → 𝐵1 (𝑥) → 𝐵2 (𝑥)
such that𝜓 (base) ≡ 𝜓base.

Lemma 5.2 avoids the input data for loop-assoc because
the induction’s target is a 1-type. By instantiating 𝐵1 with

codes0 (𝑧) and 𝐵2 with base = 𝑧, Lemma 5.2 gives a sufficient

condition for building decode, namely the data𝜓base,𝜓loop,

and𝜓loop-comp. Of course, we define𝜓base as loop. For 𝑥,𝑦 : 𝐺 ,

we define𝜓loop (𝑥,𝑦) as the chain

loop(transpcodes0 (loop(𝑥), 𝑦))

loop(𝑦 ⊗ 𝑥)

loop(𝑦) · loop(𝑥)

transp𝑧 ↦→base=𝑧 (loop(𝑥), loop(𝑦))

aploop (transp-codes(𝑥,𝑦) )

loop-comp(𝑦,𝑥 )

behavior of transp in path families

Finally, we construct 𝜓loop-comp (which doesn’t show up in

[17]’s 1-dimensional setting). Let 𝑥,𝑦, 𝑧 : 𝐺 . We want to

prove that the outer diagram of Fig. 3 commutes. The subdi-

agrams of Fig. 3 commute as follows: 𝑆1 and 𝑆2 by homotopy

naturality at transp-codes; 𝑆3 and 𝑆5 by homotopy naturality

at loop-comp; 𝑆4 by path induction; and 𝑆6 by loop-assoc.
It remains to build a path transp-codes-coh filling 𝑆7, at

the top of Fig. 3. By unfolding 𝑆7, we see that this path fills

Fig. 4: the image under aploop of a diagram 𝐷 of paths in 𝐺 .

Thus, it suffices to fill 𝐷 . The bottom left corner of 𝐷 fits

into the commuting square Fig. 5. After using this square

to rewrite 𝐷 , we rewrite the three paths making up the top

5
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coe(𝜁map (𝑥 ⊗ 𝑦), 𝑧) 𝑧 ⊗ (𝑥 ⊗ 𝑦)

coe(𝜁map (𝑥) · 𝜁map (𝑦), 𝑧) (𝑧 ⊗ 𝑥) ⊗ 𝑦

coe(𝜁map (𝑦), coe(𝜁map (𝑥), 𝑧)) coe(𝜁map (𝑦), 𝑧 ⊗ 𝑥)

𝛽-rule for coe at post-mult(𝑥 ⊗ 𝑦)

𝜁map respects tensor product

coe respects composition

associativity of ⊗

𝛽-rule for coe at post-mult(𝑥 )

𝛽-rule for coe at post-mult(𝑦)

Figure 1: coherence property of final path in transp-codes for all 𝑥,𝑦, 𝑧 : 𝐺

𝜓base (transp𝐵1 (loop(𝑥 ⊗ 𝑦), 𝑏))

𝜓base (transp𝐵1 (loop(𝑥) · loop(𝑦), 𝑏)) transp𝐵2 (loop(𝑥 ⊗ 𝑦),𝜓base (𝑏))

𝜓base (transp𝐵1 (loop(𝑦), transp𝐵1 (loop(𝑥), 𝑏))) transp𝐵2 (loop(𝑥) · loop(𝑦),𝜓base (𝑏))

transp𝐵2 (loop(𝑦),𝜓base (𝑏)) transp𝐵2 (loop(𝑦), transp𝐵2 (loop(𝑥),𝜓base (𝑏)))

via loop-comp(𝑥, 𝑦) 𝜓loop (𝑥⊗𝑦,𝑏 )

transp respects composition

𝜓loop (𝑦,transp𝐵1 (loop(𝑥 ),transp𝐵1 (loop(𝑥 ),𝑏 ) ) )

via loop-comp(𝑥, 𝑦)

via𝜓loop (𝑥,𝑏 )

transp respects composition

𝜓loop-comp (𝑥,𝑦,𝑏 )

Figure 2: coherence condition, labeled𝜓loop-comp, for loop-comp at 𝑥 , 𝑦, and 𝑏 (the colors are for readability of Fig. 3)

loop(transpcodes0 (loop(𝑦), transpcodes0 (loop(𝑥), 𝑧))) loop(transpcodes0 (loop(𝑥) · loop(𝑦), 𝑧)) loop(transpcodes0 (loop(𝑥 ⊗ 𝑦), 𝑧))

loop(transpcodes0 (loop(𝑥), 𝑧) ⊗ 𝑦) loop((𝑧 ⊗ 𝑥) ⊗ 𝑦) loop(𝑧 ⊗ (𝑥 ⊗ 𝑦))

loop(transpcodes0 (loop(𝑥), 𝑧)) · loop(𝑦) loop(𝑧 ⊗ 𝑥) · loop(𝑦)

transpbase=𝑧 (loop(𝑦), loop(transpcodes0 (loop(𝑥), 𝑧))) (loop(𝑧) · loop(𝑥)) · loop(𝑦)

transpbase=𝑧 (loop(𝑦), loop(𝑧 ⊗ 𝑥))

transpbase=𝑧 (loop(𝑦), loop(𝑧) · loop(𝑥)) loop(𝑧) · loop(𝑥) · loop(𝑦) loop(𝑧) · loop(𝑥 ⊗ 𝑦)

transpbase=𝑧 (loop(𝑦), transpbase=𝑧 (loop(𝑥), loop(𝑧)))

transpbase=𝑧 (loop(𝑥) · loop(𝑦), loop(𝑧)) transpbase=𝑧 (loop(𝑥 ⊗ 𝑦), loop(𝑧))

transp respects
composition

𝑆7

via loop-comp(𝑥, 𝑦)

𝜓loop

𝜓loop

𝑆2

𝜓loop

transp respects composition
via loop-comp(𝑥, 𝑦)

𝑆1

𝑆3

𝑆6

𝑆4

𝑆5

Figure 3: construction of𝜓loop-comp (𝑥,𝑦, 𝑧), where the colors match those of Fig. 2 for readability
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loop(transpcodes0 (loop(𝑥) · loop(𝑦), 𝑧)) loop(transpcodes0 (loop(𝑥 ⊗ 𝑦), 𝑧))

loop(transpcodes0 (loop(𝑦), transpcodes0 (loop(𝑥), 𝑧))) loop(𝑧 ⊗ (𝑥 ⊗ 𝑦))

loop(transpcodes0 (loop(𝑥), 𝑧) ⊗ 𝑦) loop((𝑧 ⊗ 𝑥) ⊗ 𝑦)

transp respects composition

via loop-comp(𝑥, 𝑦)

aploop (transp-codes(𝑥⊗𝑦,𝑧 ) )

aploop (transp-codes(𝑦,transpcodes
0 (loop(𝑥 ),𝑧 ) ) ) associativity of ⊗

via transp-codes(𝑥, 𝑧 )

Figure 4: the diagram filled by transp-codes-coh

transpcodes0 (loop(𝑦), transpcodes0 (loop(𝑥), 𝑧)) transpcodes0 (loop(𝑦), 𝑧 ⊗ 𝑥)

transpcodes0 (loop(𝑥), 𝑧) ⊗ 𝑦 (𝑧 ⊗ 𝑥) ⊗ 𝑦

via transp-codes(𝑥, 𝑧 )

transp-codes(𝑦,transpcodes
0 (loop(𝑥 ),𝑧 ) ) transp-codes(𝑦,𝑧⊗𝑥 )

via transp-codes(𝑥, 𝑧 )

hnat(transp-codes(𝑥,𝑧 ) )

Figure 5: rewriting transpcodes0 (loop(𝑥), 𝑧) ⊗ 𝑦

right corner of 𝐷 , namely transp-codes(𝑥 ⊗ 𝑦, 𝑧):

transpcodes0 (loop(𝑥 ⊗ 𝑦), 𝑧)

coe(appr
1

(apcodes (loop(𝑥 ⊗ 𝑦))), 𝑧)

coe(𝜁map (𝑥 ⊗ 𝑦), 𝑧)

𝑧 ⊗ (𝑥 ⊗ 𝑦)

via path induction on loop(𝑥 ⊗ 𝑦)

via codes’s point 𝛽-rule

𝛽-rule for coe

Call these 𝑝1, 𝑝2, and 𝑝2, respectively. Rewrite 𝑝1 with homo-

topy naturality as in the commuting square Fig. 6. Rewrite

𝑝2 with codes’s tensor 𝛽-rule [codes-𝛽-mu] to get the com-

muting diagram Fig. 7. Lastly, rewrite 𝑝3 with Lemma 5.1.

Now, we fill 𝐷 by cancelling sets of like terms, such as

codes’s point 𝛽-rules. This completes decode. Hence loop is

an equivalence [loop-equiv].

Remark 5.3. Our delooping proof extends [6, Section 4.3],

which shows the result when 𝐺 is a 1-group. The difference

between the two proofs is that when 𝐺 is a 1-group,

• the target of codes is the 1-typeU≤0
instead ofU≤1

• defining transp-codes-coh is trivial as 𝐺 is a set.

Our formalization is entirely separate from that of [6].

6 The loop space as a biequivalence
In this section, we make K2 into a pseudofunctor, which
extends the notion of functor to bicategories. Then we use

Section 5 to show that, withK2, the loop space pseudofunctor

forms a biadjoint biequivalence between 2Type∗0 and c2Grp.

Definition 6.1 (PsftorStr). A pseudofunctor C → D be-

tween bicategories is a function 𝐹0 : Ob(C) → Ob(D) with
• a function 𝐹1 : homC (𝑎, 𝑏) → homD (𝐹0 (𝑎), 𝐹0 (𝑏)) for
all 𝑎, 𝑏 : Ob(C), called the action on morphisms

• a 2-cell 𝐹 - id𝑎 : 𝐹1 (id𝑎) = id𝐹0 (𝑎) for each 𝑎 : Ob(C)
• a 2-cell 𝐹◦ (𝑓 , 𝑔) : 𝐹1 (𝑔 ◦ 𝑓 ) = 𝐹1 (𝑔) ◦ 𝐹1 (𝑓 ) for all
composable morphisms 𝑓 and 𝑔

• coherence identitiesmaking 𝐹◦ commutewith the right

unitors, the left unitors, and the associators.

Example 6.2. The loop space Ω forms a pseudofunctor

2Type∗0 → c2Grp, whose object function and action on mor-

phisms are defined as in Example 4.7. By the SIP for pointed

homotopies, we can put the action on 2-cells in an exten-

sional form 2c-actΩ [LoopFunctor-ap] that takes pointed

homotopies to natural isomorphisms.

Lemma 6.3 (Ω-fmap-ap-hnat). Let 𝑓 :=
(
𝑓0, 𝑓𝑝

)
, 𝑔 :=

(
𝑔0, 𝑔𝑝

)
:

(𝑋, 𝑥0) → 𝑌 be maps in 2Type∗0. Let 𝐻 :=
(
𝐻0, 𝐻𝑝

)
be a

pointed homotopy 𝑓 ∼∗ 𝑔. The underlying homotopy 𝜃𝐻 of
2c-actΩ (𝐻 ) fits into a commuting pentagon for all 𝑝 : Ω(𝑋 ):

fun(Ω(𝑓 )) (𝑝) fun(Ω(𝑔)) (𝑝)

𝑓 −1𝑝 · ap𝑓 (𝑝) · 𝑓𝑝 𝑔−1𝑝 · ap𝑔 (𝑝) · 𝑔𝑝

𝑓 −1𝑝 ·
(
𝐻0 (𝑥0) · ap𝑔 (𝑝) · 𝐻0 (𝑥0)−1

)
· 𝑓𝑝

𝜃𝐻 (𝑝 )

typal 𝛽-rule
for Ω (𝑓 )

typal 𝛽-rule
for Ω (𝑔)

via hnat(𝑝 ) via 𝐻𝑝

7
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transpcodes0 (loop(𝑥 ⊗ 𝑦), 𝑧) coe(appr
1

(apcodes (loop(𝑥 ⊗ 𝑦))), 𝑧)

transpcodes0 (loop(𝑥) · loop(𝑦), 𝑧) coe(appr
1

(apcodes (loop(𝑥) · loop(𝑦))), 𝑧)

𝑝1

hnat(loop-comp(𝑥,𝑦) )

Figure 6: rewriting 𝑝1, the path defined via path induction on loop(𝑥 ⊗ 𝑦)

appr
1

(apcodes (loop(𝑥 ⊗ 𝑦))) 𝜁map (𝑥 ⊗ 𝑦)

𝜁map (𝑥) · 𝜁map (𝑦)

appr
1

(apcodes (loop(𝑥))) · appr
1

(apcodes (loop(𝑦))) 𝜁map (𝑥) · appr
1

(apcodes (loop(𝑦)))

𝑝2

via loop-comp(𝑥, 𝑦)

𝜁map respects tensor product

via codes’s point 𝛽-rule at 𝑦

via codes’s
point 𝛽-rule at 𝑥

Figure 7: rewriting 𝑝2, the path defined via codes’s point 𝛽-rule

Turning to K2, the next two lemmas follow from its in-

duction principle. The first gives a way to build a homotopy

between two functions defined byK2-recursion, and the sec-

ond a way to prove that two such homotopies are equal. The

first lemma will be useful for defining 2-cells in 2Type∗0, and
the second for proving coherence conditions on them.

Lemma 6.4 (K-hom-ind). Let 𝐺 be a 2-group and 𝑋 be a
2-type. Let 𝑓 , 𝑔 : K2 (𝐺) → 𝑋 . Given terms

base∼ : 𝑓 (base) = 𝑔(base)
loop∼

: (𝑥 : 𝐺) → ap𝑓 (loop(𝑥)) · base∼ = base∼ · ap𝑔 (loop(𝑥))
loop-comp∼

: loop∼ commutes with 𝐺 ’s tensor product

we have a homotopy 𝐻 : 𝑓 ∼ 𝑔 satisfying 𝐻 (base) ≡ base∼

and the following typal 𝛽-rule for all 𝑥 : 𝐺 :

𝑓 (base) 𝑔(base) 𝑓 (base) 𝑔(base)

𝑓 (base) 𝑔(base) 𝑓 (base) 𝑔(base)

hnat(loop(𝑥 ) ) loop∼ (𝑥 )

Lemma 6.5 (K-hom2-ind). Let 𝐺 , 𝑋 , 𝑓 , and 𝑔 be as in
Lemma 6.4. Let 𝐻1, 𝐻2 : 𝑓 ∼ 𝑔. Suppose we have an iden-
tity base∼∼ : 𝐻1 (base) = 𝐻2 (base) and a 3-dimensional path
loop∼∼ whose type is displayed by Fig. 8. Then we have a ho-
motopy 𝑅 : 𝐻1 ∼ 𝐻2 such that 𝑅(base) ≡ base∼∼.

Example 6.6. We equip K2 : Ob(c2Grp) → Ob(2Type∗0)
with the structure of a pseudofunctor. Its action on mor-

phisms [K2-map] sends 𝑓 : 𝐺1 → 𝐺2 to the pointed map

defined by K2-recursion on loop ◦𝑓 : 𝐺1 → Ω(K2 (𝐺2)).
This action preserves the identity morphism [KFunctor-idf]

and composition [KFunctor-comp], with both preservation

proofs defined via Lemma 6.4. We use Lemma 6.5 to prove

coherence with unitors [KFunctor-conv-unit] and coherence

with the associator [KFunctor-conv-assoc].

As for Ω, we can put K2’s action on 2-cells in an exten-

sional form 2c-actK2
—defined via Lemma 6.4—that takes nat-

ural isomorphisms to pointed homotopies [apK2].

Definition 6.7 (Pstransf). For pseudofunctors 𝐹 : C → D
and 𝐺 : D → C, a pseudotransformation 𝐹 ⇒ 𝐺 consists of

• for each 𝑎 : Ob(C), a 1-cell 𝜉0 (𝑎) : 𝐹0 (𝑎) → 𝐺0 (𝑎),
called a component of the pseudotransformation

• for all 𝑓 : homC (𝑎, 𝑏), a 2-cell 𝜉1 (𝑓 ) filling the square

𝐹0 (𝑎) 𝐹0 (𝑏)

𝐺0 (𝑎) 𝐺0 (𝑏)

𝐹1 (𝑓 )

𝜉0 (𝑎) 𝜉0 (𝑏 )

𝐺1 (𝑓 )

• coherence identities witnessing that 𝜉1 commutes with

the unitors and with the associators.

A pseudtransformation is a pseudoequivalence if all its com-

ponents are adjoint equivalences.

Note that a pseudofunctor automatically commutes with

2-cells by homotopy naturality.

Definition 6.8 (Biequiv). A (biadjoint) biequivalence be-
tween C and D is a pseudofunctor 𝐹 : C → D along with

• a pseudofunctor 𝐺 : D → C
• a pseudoequivalence 𝜀 : 𝐺 ◦ 𝐹 ⇒ idC
• a pseudoequivalence 𝜂 : idD ⇒ 𝐹 ◦𝐺
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𝑓 (base) 𝑔(base) 𝑓 (base) 𝑔(base) 𝑔(base) 𝑓 (base) 𝑔(base)

•

𝑓 (base) 𝑔(base) 𝑓 (base) 𝑔(base) 𝑔(base) 𝑓 (base) 𝑔(base)

𝐻1 (base)

ap𝑓 (loop(𝑥 ) ) ap𝑔 (loop(𝑥 ) )

𝐻2 (base)

ap𝑓 (loop(𝑥 ) ) ap𝑔 (loop(𝑥 ) ) ap𝑔 (loop(𝑥 ) )

𝐻2 (base) 𝐻1 (base)

ap𝑔 (loop(𝑥 ) )

𝐻1 (base) 𝐻2 (base) 𝐻2 (base) 𝐻1 (base)

hnat(loop(𝑥 ) ) hnat(loop(𝑥 ) ) via base∼∼

Figure 8: type of loop∼∼, where the operation • denotes horizontal composition of squares

• a path, called the triangulator, filling the diagram

(𝐹 ◦𝐺) ◦ 𝐹 𝐹 ◦ (𝐺 ◦ 𝐹 )

idD ◦𝐹 𝐹 𝐹 ◦ idC

associator

𝐹◦𝜀𝜂◦𝐹

left unitor right unitor

Note that the triangulator is equivalent to an invertible
modification [1, Definition 2.14], that is, a family of paths

(idD ◦𝐹 )
0
(𝑎) = (𝐹 ◦ idC)0 (𝑎) that is natural in 𝑎 : Ob(C).

One might wonder why Definition 6.8 omits the other

triangle identity and the swallowtail identities, which are

included in a coherent biadjunction. With fewer fields, it

makes building biequivalences easier. Also, it is equivalent,

in a coherent sense, to the one specifying all the biadjunction

data. A classical proof of Gurski’s contains such an equiv-

alence [11, Theorem 3.2], and it seems Gurski’s argument

could be ported to HoTT. Within HoTT, when C and D
are univalent (as in the scenario we care about), our short

definition is fully coherent in the following sense.

Lemma 6.9 (biadjeqiv-is-prop). Let 𝐹 : C → D be a
pseudofunctor between univalent bicategories. The type ( 𝐹 is

a biequivalence ) is a proposition.

Proof. By univalence, both 𝜂 and 𝜀 become paths. Thus,

biequivalence data on 𝐹 behaves like half-adjoint equivalence

data on a function, and the latter is a proposition. □

With Lemma 6.9, we will see that our notion of biequivalence

is the same as isomorphism of bicategories (Lemma 7.3).

Returning to our desired biequivalence, the next result

gives one of the families of adjoint equivalences that Defini-

tion 6.8 requires. (Section 5 gives the other.)

Note 6.10. Let𝑋 be a pointed connected 2-type. Define the

pointed map 𝜑𝑋 : K2 (Ω(𝑋 )) →∗ 𝑋 by K2-recursion on the

identity 2-group morphism Ω(𝑋 ) → Ω(𝑋 ). By 𝜑𝑋 ’s point
𝛽-rule, the following triangle commutes [LoopK-hom]:

Ω(𝑋 )

Ω(K2 (Ω(𝑋 ))) Ω(𝑋 )

loop id

fun(Ω (𝜑𝑋 ) )

By Section 5, loop is an equivalence, so that fun(Ω(𝜑𝑋 )) is
one as well. Since both 𝑋 and K2 (Ω(𝑋 )) are connected, it
follows that 𝜑𝑋 is an equivalence [Loop-conn-equiv].

Theorem 6.11 (Biadj-bieqiv-main). The pseudofunctors
Ω and K2 form a biequivalence between 2Type∗0 and c2Grp.

Proof. We outline the four major steps of the proof.

Step 1: Construct 𝜀 : K2 ◦ Ω ⇒ id2Type∗0 .
For every pointed connected 2-type 𝑋 , define the map

𝜉0 (𝑋 ) : K2 (Ω(𝑋 )) →∗ 𝑋 as 𝜑𝑋 (see Note 6.10). Let 𝑓 : 𝑋 →
𝑌 be a map in 2Type∗0. We want a path 𝜉1 (𝑓 ) making the

following square commute:

K2 (Ω(𝑋 )) K2 (Ω(𝑌 ))

𝑋 𝑌

K2 (Ω (𝑓 ) )

𝜉0 (𝑋 ) 𝜉0 (𝑌 )

𝑓

By the SIP for pointed maps, it suffices to find a pointed ho-

motopy (𝐻1 (𝑓 ), 𝐻2 (𝑓 )) : 𝑓 ◦ 𝜉0 (𝑋 ) ∼∗ 𝜉0 (𝑌 ) ◦ K2 (Ω(𝑓 )).
We define 𝐻1 (𝑓 ) : fun(𝑓 ) ◦ fun(𝜉0 (𝑋 )) ∼ fun(𝜉0 (𝑌 )) ◦
fun(K2 (Ω(𝑓 ))) by applying Lemma 6.4 to base∼ := refl,
loop∼

:= 𝐻1 (𝑓 )- loop, and loop-comp∼
:= 𝐻1 (𝑓 )-loop-comp.

Here, 𝐻1 (𝑓 )- loop(𝑝) is defined as the chain

apfun(𝑓 ◦𝜉0 (𝑋 ) ) (loop(𝑝))

apfun(𝑓 ) (𝑝)

apfun(𝜉0 (𝑌 ) ) (loop(apfun(𝑓 ) (𝑝)))

apfun(𝜉0 (𝑌 )◦K2 (Ω (𝑓 ) ) ) (loop(𝑝))

via 𝜉0 (𝑋 )’s point 𝛽-rule

via 𝜉0 (𝑌 )’s point 𝛽-rule

via K2 (Ω (𝑓 ) )’s point 𝛽-rule

for each 𝑝 : 𝑥0 = 𝑥0 where 𝑥0 denotes the basepoint of 𝑋 .

The term 𝐻1 (𝑓 )-loop-comp is a routine yet long computa-

tion, and we refer the reader to its mechanization [SqKLoop-

coher]. Our definition of 𝐻1 (𝑓 ) makes it trivial to define

𝐻2 (𝑓 ), so the definition of 𝜉1 (𝑓 ) is complete [SqKLoop].

In Section B, we prove coherence of 𝜉1 via Lemma 6.5.

Step 2: Construct 𝜂 : idc2Grp ⇒ Ω ◦ K2.
9
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For each 2-group 𝐺 , define the 2-group morphism 𝜉0 (𝐺) :
𝐺 → Ω(K2 (𝐺)) as loop. Let 𝑓 : 𝐺1 → 𝐺2 be a 2-group map.

To define the path 𝜉1 (𝑓 ), we want a natural isomorphism:

𝐺1 𝐺2

Ω(K2 (𝐺1)) Ω(K2 (𝐺2))

𝑓

loop loop

Ω (K2 (𝑓 ) )

𝐼 (𝑓 )

We define the two components of 𝐼 (𝑓 ) from K2 (𝑓 )’s point
and tensor 𝛽-rules, respectively [SqLoopK].

We prove that 𝜉1 satisfies the relevant coherence condi-

tions. In the case of unitors, we want to prove that

Ω(K2 (id𝐺 )) ◦ 𝜉0 (𝐺) 𝜉0 (𝐺) ◦ id𝐺

idΩ (K2 (𝐺 ) ) ◦𝜉0 (𝐺) 𝜉0 (𝐺)

𝜉1 (id𝐺 )

right unitorcomposite
id preservation

left unitor

commutes for all 2-groups𝐺 . By the SIP for natural isos, this

square amounts to a homotopy 𝐻𝐺 between the underlying

homotopies of the associated natural isomorphisms. For each

𝑥 : 𝐺 , we define 𝐻𝐺 (𝑥) as the following commuting outer

diagram, where 2c-actΩ is as in Example 6.2:

loop(𝑥)

apidK
2
(𝐺 )

(loop(𝑥)) apfun(K2 (id𝐺 ) ) (loop(𝑥))

Ω(idK2 (𝐺 ) ) (loop(𝑥)) Ω(K2 (id𝐺 )) (loop(𝑥))

apid is identity
K2 (id𝐺 )’s point

𝛽-rule

refl

hnatK
2
- id𝐺 (loop(𝑥 ) )

refl

2c-actΩ (K2- id𝐺 ,loop(𝑥 ) )

𝛽-rule of Lemma 6.4

Lemma 6.3

This completes the coherence identitywith the unitors [LoopK-

PT-unit]. The coherence identity with the associator is simi-

lar but more complicated [LoopK-PT-assoc].

Step 3: Prove that 𝜀 and 𝜂 are levelwise adjoint equivalences.
By Note 6.10, 𝜀 is a levelwise adjoint equivalence. By Sec-

tion 5, 𝜂 is a levelwise adjoint equivalence.

Step 4: Construct the triangulator.
We construct an invertible modification between 𝜂 ◦ Ω

and Ω ◦ 𝜀 (hiding associativity and unit terms for readabil-

ity) [Loop-zig-zag]. We first need a natural isomorphism

Ω(K2 (Ω(𝑋 )))

Ω(𝑋 ) Ω(𝑋 )

Ω (𝜑𝑋 )loopΩ(X)

idΩ (𝑋 )

𝜈 (𝑋 )

for each pointed connected 2-type 𝑋 , where 𝜑𝑋 is as in

Note 6.10. We define 𝜈 (𝑋 ) directly from 𝜑𝑋 ’s 𝛽-rules [Loop-

zz0-iso]. We also need to prove 𝜈 is natural in 𝑋 , i.e., that

Fig. 9 commutes for every map 𝑓 : 𝑋 → 𝑌 in 2Type∗0. By

the SIP for natural isos, we just need an identity between

the relevant underlying homotopies. We get one by applying

Lemma 6.3 and then the 𝛽-rule of Lemma 6.4 to the left arrow

of Fig. 9 [Loop-zz1-∼]. □

Remark 6.12. In general, one can adjust the unit or counit

of an incoherent biequivalence to get the triangulator [11,

Theorem 3.2]. For us, however, this process would conceiv-

ably make the new pseudotransformation harder to work

with. For example, the components 𝜉0 from Steps 1 and 2

have simple forms—unlike their inverses, which would be

included in the adjusted pseudotransformation.

7 The loop space as an isomorphism
In this section, we prove that the pseudofunctorΩ : 2Type∗0 →
c2Grp is an isomorphism, i.e., an equivalence on objects and

fully faithful. We do so by proving that a pseudofunctor

between univalent bicategories is a biequivalence precisely

when it is an isomorphism. The SIP tells us that isomorphism

captures the notion of identity, so we can view this proof as

justification for our short definition of biequivalence.

Definition 7.1. Let C and D be bicategories and let 𝐹 :

C → D be a pseudofunctor. We say that 𝐹 is an isomor-
phism if 𝐹0 : Ob(C) → Ob(D) is an equivalence and 𝐹1 :

homC (𝑎, 𝑏) → homD (𝐹0 (𝑎), 𝐹0 (𝑏)) is an equivalence for all

𝑎, 𝑏 : Ob(C). We denote the type of isomorphisms by �.

Lemma 7.2 (iso-bc-==-≃). For all bicategories C andD, the
canonical function (C = D) → (C � D) is an equivalence.

Proof. By the SIP along with the univalence axiom. □

Lemma 7.3 (bae-iso-≃). A pseudofunctor of univalent bi-
categories is a biequivalence if and only if it is an isomorphism.

Proof. Let 𝐹 : C → D be a biequivalence of univalent

bicategories. Since C andD are univalent, it’s easy to see that

𝐹 is an equivalence on objects. To see that 𝐹 is fully faithful,

we reuse the standard proof that adjoint equivalences of

1-categories are fully faithful.

Conversely, by Lemma 7.2, it suffices to observe that the

identity pseudofunctor is a biequivalence. □

Theorem 7.4. The pseudofunctor Ω is an isomorphism.

Proof. By Lemma 7.3 and Theorem 6.11. □

Corollary 7.5 (Eqality-main). The pseudofunctor Ω
induces a path 2Type∗0 = c2Grp.

By the same reasoning, K2 induces a path c2Grp = 2Type∗0.

Remark 7.6. The proof that a biequivalence is fully faithful
works on the level ofwild categories [9, Appendix B]. Thus, to
derive the isomorphism 2Type∗0 � c2Grp, we use only that

Ω is a pseudofunctor and that it forms a 1-coherent adjoint
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Ω(𝑓 ) ◦ Ω(𝜑𝑋 ) ◦ loopΩ (𝑋 ) Ω(𝑓 )

Ω(𝜑𝑌 ) ◦ Ω(K2 (Ω(𝑓 ))) ◦ loopΩ (𝑋 ) Ω(𝜑𝑌 ) ◦ loopΩ (𝑌 ) ◦Ω(𝑓 )

via 𝜈 (𝑋 )

via 2c-actΩ (𝜉11 (𝑓 ) ) via 𝜈 (𝑌 )

via 𝜉2
1
(Ω (𝑓 ) )

Figure 9: naturality condition for 𝜈 , where 𝜉1
1
and 𝜉2

1
are the 2-cells—as natural isos—from Steps 1 and 2, respectively

equivalence with K2. This means we can avoid most of the

hardest computations making up Theorem 6.11! But this ap-

proach puts the cart before the horse: We don’t know a priori

whether the 1-coherent equivalence is part of a biequivalence,

so the biequivalence wewould get from the isomorphism—by

the general method, adapted to the univalent setting, of turn-

ing a weak equivalence into a biequivalence [16, Theorem

7.4.1]—would have a less tractable form than Theorem 6.11.

8 Delooping types
We move to our second contribution. In Section 5, we consid-

ered deloopings of types carrying the structure of a coherent

2-group—a generalization of delooping 1-groups. To classify

pointed connected 2-types by Sính triples, we need to con-

sider a wider class of deloopings.We review some results—on

the existence and uniqueness of deloopings—to this effect.

Definition 8.1. Let 𝑋 be a pointed type and let U be a

universe. The type of 𝑋 -torsors is

𝑇𝑋 := (𝑌 : U) × ∥𝑌 ∥ × ((𝑦 : 𝑌 ) → 𝑋 ≃∗ (𝑌,𝑦))

where ≃∗ denotes the type of pointed equivalences.

Theorem 8.2 (torsors.Delooping). Suppose the type𝑇∗𝑋 :=

(𝜏 : 𝑇𝑋 ) × pr
1
(𝜏) is contractible with center (𝜏𝑐 (𝑋 ), 𝑏𝑋 ).

(1) For all 𝜏 : 𝑇𝑋 , (𝜏 = 𝜏𝑐 (𝑋 )) ≃ pr
1
(𝜏).

(2) The pointed type (𝑇𝑋, 𝜏𝑐 (𝑋 )) is a delooping of 𝑋 , i.e., it
admits a pointed equivalence Ω(𝑇𝑋 ) ≃∗ 𝑋 .

(3) Let 𝑍 be a pointed connected type inU. If 𝑍 is a deloop-
ing of 𝑋 , then 𝑍 ≃∗ 𝑇𝑋 .

Proof. By the proof of [32, Theorem 2]. □

Example 8.3. If 𝑋 is𝑚-connected and 2𝑚-truncated with

𝑚 ≥ −1, then 𝑇∗𝑋 is contractible [32, Corollary 7]. For each

abelian group 𝐴 and integer 𝑛 ≥ 1, recall that the Eilenberg-

MacLane space 𝐾 (𝐴,𝑛) [17, Section 5] is (𝑛 − 1)-connected
and 𝑛-truncated and that Ω(𝐾 (𝐴,𝑛 + 1)) ≃∗ 𝐾 (𝐴,𝑛). Thus,
if 𝑛 ≥ 2, we have a pointed equivalence 𝐾 (𝐴,𝑛 + 1) ≃∗
𝑇 (𝐾 (𝐴,𝑛)) [EM-Torsors-≃].

Theorem 8.4 ([7, Theorem 5.1]). If 𝑛 ≥ 2,𝐾 (−, 𝑛) : Ab →
U≥𝑛−1,≤𝑛

∗ is an equivalence of types with inverse 𝜋𝑛 , where
U≥𝑛−1,≤𝑛

∗ denotes the type of (𝑛 − 1)-connected, 𝑛-truncated
pointed types inU and 𝜋𝑛 denotes the 𝑛-th homotopy group.

Corollary 8.5 (EM-Ω-==-ext). Let𝐴 be an abelian group
and 𝑋 a pointed type. For 𝑛 ≥ 2, 𝐾 (𝐴,𝑛) ≃∗ 𝑋 is equivalent to
(𝑋 is (𝑛 − 1)-connected) × (𝑋 is 𝑛-truncated) × (𝜋𝑛 (𝑋 ) = 𝐴).

Proof. If 𝑋 is (𝑛 − 1)-connected and 𝑛-truncated, then

(𝐾 (𝐴,𝑛) = 𝑋 ) ≃ (𝜋𝑛 (𝑋 ) = 𝐴) by Theorem 8.4. □

9 Classification by Sính triples
Let 𝑛 be a positive integer. Recall that, according to the uni-

form definition of higher groups in HoTT [7], the internal

𝑛-groups are the pointed connected 𝑛-types. So, the type of

(internal) 𝑛-groups is exactly U≥0,≤𝑛
∗ , and U≥0,≤2

∗ is exactly

the type of objects of the bicategory 2Type∗0. In this section,

using Section 8, we classify (𝑛 + 1)-groups in terms of group

cohomology (Theorem 9.2). To begin, we decompose any

𝑛-group into three pieces of data as follows.

Lemma 9.1 (N-Grps-≃). We have an equivalence

U≥0,≤𝑛
∗ ≃

(
𝐵 : U≥0,≤𝑛−1

∗
)
×
(
𝐹 : 𝐵 → U≥𝑛−1,≤𝑛 ) × 𝐹 (pt𝐵)

Proof. In one direction, send an 𝑛-group 𝐺 : U≥0,≤𝑛
∗

to the triple 𝛿 (𝐺) := (𝐵, 𝐹, 𝑝) defined as follows. Let 𝐵 :=

∥𝐺 ∥𝑛−1 with basepoint

��pt𝐺
��
𝑛−1. This is connected because

truncations preserve connectedness. Let 𝐹 (𝑏) := fib |− |𝑛−1 (𝑏),
the fiber of |−|𝑛−1 over 𝑏. This is (𝑛 − 1)-connected by [29,

Corollary 7.5.8]. It is𝑛-truncated because Σ preserves𝑛-types.

Let 𝑝 :=
(
pt𝐺 , refl

)
. In the other direction, send (𝐵, 𝐹, 𝑝) to the

pointed 𝑛-type 𝛼 (𝐵, 𝐹, 𝑝) :=
(
(𝑏 : 𝐵) × 𝐹 (𝑏),

(
pt𝐵, 𝑝

) )
, which

is connected because Σ preserves connectedness.

We claim 𝛿 ◦ 𝛼 ∼ id. By the SIP, an identity (𝐵1, 𝐹1, 𝑝2) =
(𝐵2, 𝐹2, 𝑝3) amounts to a tuple consisting of 𝑒 : 𝐵1 ≃∗ 𝐵2,
𝑡 : (𝑏 : 𝐵1) → 𝐹1 (𝑏) ≃ 𝐹2 (𝑒 (𝑏)), and a coherence field

𝑐 : transp𝐹2 (pt𝑒 , 𝑡 (pt𝐵1

, 𝑝2)) = 𝑝3. Now, let (𝐵, 𝐹, 𝑝) be a

suitable triple. We have a composite 𝑒 of pointed equiva-

lences: ∥(𝑏 : 𝐵) × 𝐹 (𝑏)∥𝑛−1 ≃∗ ∥(𝑏 : 𝐵) × ∥𝐹 (𝑏)∥𝑛−1∥𝑛−1 ≃∗
∥𝐵∥𝑛−1 ≃∗ 𝐵. Note that 𝑒 fits into the commuting triangle

(𝑏 : 𝐵) × 𝐹 (𝑏)

∥(𝑏 : 𝐵) × 𝐹 (𝑏)∥𝑛−1 𝐵

|− |𝑛−1 pr
1

𝑒

This yields 𝑡 (𝑏,𝑦) : fib |− |𝑛−1 ( | (𝑏,𝑦) |𝑛−1) ≃ 𝐹 (𝑦) for (𝑏,𝑦) :
(𝑏 : 𝐵) × 𝐹 (𝑏). As transp𝐹 (pt𝑒 , 𝑡 (

(
pt𝐵, 𝑝

)
,
( (

pt𝐵, 𝑝
)
, refl

)
)) ≡

𝑝 , we see that 𝛿 (𝛼 (𝐵, 𝐹, 𝑝)) = (𝐵, 𝐹, 𝑝).
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Next, we claim 𝛼 ◦ 𝛿 ∼ id. Let 𝐺 be an 𝑛-group. Define 𝑒 :

𝐺 → (𝑏 : ∥𝐺 ∥𝑛−1) × fib |− |𝑛−1 (𝑏) by 𝑒 (𝑔) :=
(
|𝑔|𝑛−1, (𝑔, refl)

)
.

It is easy to check that 𝑒 is a pointed equivalence. By the SIP

for pointed types, it follows that 𝛼 (𝛿 (𝐺)) =𝐺 . □

Let𝐺 be an𝑛-group. In accordancewith [7, Section 4.3], we

define a𝐺-module as a family𝐻 : 𝐺 → Ab of abelian groups,

which encodes an action of Ω(𝐺) on 𝐻 (pt𝐺 ) (in the sense of

a map into Aut(𝐻 (pt𝐺 ))). The group cohomology 𝐻𝑚 (𝐺,𝐻 )
of 𝐺 over 𝐻 is the singular cohomology of 𝐺 with coeffi-

cients in 𝐻 , i.e., 𝐻𝑚 (𝐺,𝐻 ) := ∥(𝑢 : 𝐺) →∗ 𝐾 (𝐻 (𝑢),𝑚)∥
0
.

Here, (𝑢 : 𝐺) →∗ 𝐾 (𝐻 (𝑢),𝑚) denotes the type of pointed sec-
tions of𝐾 (𝐻 (−),𝑚): a section 𝑓 : (𝑢 : 𝐵𝐺) → 𝐾 (𝐻 (𝑢),𝑚) of
the underlying type family together with a proof that 𝑓 pre-

serves the basepoint. Its elements are also called cocycles, a
term from cohomology theory. A triple of the form (𝐺,𝐻,𝜅)
with 𝜅 : 𝐻𝑛+2 (𝐺,𝐻 ) is called a Sính 𝑛-triple. When 𝑛 = 1,

we just call it a Sính triple. An untruncated Sính 𝑛-triple is a
triple (𝐺,𝐻,𝜅) where 𝜅 : (𝑢 : 𝐺) →∗ 𝐾 (𝐻 (𝑢), 𝑛 + 2).

Theorem 9.2 (NGrp-Sinh-≃). For𝑛 ≥ 1, the type of (𝑛 + 1)-
groups is equivalent to that of untruncated Sính 𝑛-triples.

Proof. It is more illuminating to start from the untrun-

cated Sính𝑛-triples. Let𝐺 : U≥0,≤𝑛
∗ . By Lemma 9.1, it suffices

to show that (𝐻 : 𝐺 → Ab) × ((𝑢 : 𝐺) →∗ 𝐾 (𝐻 (𝑢), 𝑛 + 2))
is equivalent to

(
𝑋 : 𝐺 → U≥𝑛,≤𝑛+1) × 𝑋 (pt𝐺 ).

For each 𝐻 : 𝐺 → Ab, we use Section 8 to recast the type

of (𝑛 + 2)-dimensional cocycles on 𝐺 over 𝐻 . We have

(𝑢 : 𝐺) →∗ 𝐾 (𝐻 (𝑢), 𝑛 + 2)
≃ (𝑢 : 𝐺) →∗ 𝑇 (𝐾 (𝐻 (𝑢), 𝑛 + 1)) (by Example 8.3)

≃ (𝑋 : 𝐺 → U)
× (𝑑 : (𝑢 : 𝐺) → ∥𝑋 (𝑢)∥
×((𝑥 : 𝑋 (𝑢)) → 𝐾 (𝐻 (𝑢), 𝑛 + 1) ≃∗ (𝑋 (𝑢), 𝑥)))
×
(
𝑋 (pt𝐺 ), 𝑑 (pt(𝐺))

)
= 𝜏𝑐 (𝐾 (𝐻 (𝑢), 𝑛 + 2))

By Theorem 8.2(1),

(
𝑋 (pt𝐺 ), 𝑑 (pt(𝐺))

)
= 𝜏𝑐 (𝐾 (𝐻 (𝑢), 𝑛 +

2)) is equivalent to 𝑋 (pt𝐺 ). By Corollary 8.5, 𝐾 (𝐻 (𝑢), 𝑛 +
1) ≃∗ (𝑋 (𝑢), 𝑥) is equivalent to (𝑋 (𝑢) is 𝑛-connected) ×
(𝑋 (𝑢) is 𝑛 + 1-truncated) × (𝜋𝑛+1 (𝑋 (𝑢), 𝑥) = 𝐻 (𝑢)). There-
fore, after rearranging types, we see that (𝐻 : 𝐺 → Ab) ×
((𝑢 : 𝐺) →∗ 𝐾 (𝐻 (𝑢), 𝑛 + 2)) is equivalent to (𝑋 : 𝐺 → U)×
𝑋 (pt𝐺 )×((𝑢 : 𝐺) → ∥𝑋 (𝑢)∥ × 𝐸1 (𝑢) × 𝐸2 (𝑢))—we label this
latter type as Λ𝐺 . Here, we have defined

𝐸1 (𝑢) := 𝑋 (𝑢) → (𝑋 (𝑢) is 𝑛-connected, (𝑛 + 1)-truncated)
𝐸2 (𝑢) := (𝐻 : Ab) × ((𝑥 : 𝑋 (𝑢)) → 𝜋𝑛+1 (𝑋 (𝑢), 𝑥) = 𝐻 (𝑢))

Let 𝑢 : 𝐺 . First, we observe that ∥𝑋 (𝑢)∥ × 𝐸1 (𝑢) holds
if and only if 𝑋 (𝑢) is 𝑛-connected and (𝑛 + 1)-truncated.
Next, we claim that 𝐸2 (𝑢) is contractible as soon as 𝑋 (𝑢) is

𝑛-connected. Indeed, 𝐸2 (𝑢) is the type of diagonal fillers of

𝑋 (𝑢) Ab

1 1

𝜋𝑛+1 (𝑋 (𝑢 ),−)

Note that Ab is a 1-type, hence an 𝑛-type. If 𝑋 (𝑢) is 𝑛-

connected, the type of such fillers is contractible by virtue

of the (𝑛-connected, 𝑛-truncated) factorization system [25].

It follows that Λ𝐺 is equivalent to

(
𝑋 : 𝐺 → U≥𝑛,≤𝑛+1) ×

𝑋 (pt𝐺 ), which finishes the proof. □

Note 9.3 (Sinh-action). Let 𝐺 be an (𝑛 + 1)-group and let

(Γ𝜎 (𝐺), 𝐻𝜎 (𝐺), 𝜅𝜎 (𝐺)) be the untruncated Sính 𝑛-triple pro-

duced by Theorem 9.2. We have that Γ𝜎 (𝐺) ≡ ∥𝐺 ∥𝑛 , known
as the fundamental 𝑛-group Π𝑛 (𝐺) of 𝐺 . We claim that

𝐻𝜎 (𝐺) is the canonical action 𝐶𝑛,𝐺 of Π𝑛 (𝐺) on 𝜋𝑛+1 (𝐺),
with 𝐶𝑛,𝐺 ( |𝑥 |𝑛) := 𝜋𝑛+1 (𝐺, 𝑥).

Indeed, the proof of Theorem 9.2 tells us that 𝐻𝜎 (𝐺,𝑢) =
𝜋𝑛+1 (fib |− |𝑛 (𝑢), 𝑦) for all𝑢 : ∥𝐺 ∥𝑛 and𝑦 : fib |− |𝑛 (𝑢). AsAb is
a 1-type, it suffices to show that𝜋𝑛+1 (fib |− |𝑛 ( |𝑥 |𝑛), (𝑥, refl)) =
𝜋𝑛+1 (𝐺, 𝑥) for all 𝑥 : 𝐺 . We do so by induction on 𝑛 using ba-

sic properties of path types of a truncation [Ωˆ′-hfib-Trunc].
It also follows easily from the long exact sequence [29, Theo-

rem 8.4.6] for the fiber sequence fib |− |𝑛 ( |𝑥 |𝑛) → 𝐺 → ∥𝐺 ∥𝑛 .
We turn to a type-theoretic version of MacLane andWhite-

head’s classical bijection, extended to all dimensions ≥ 2.

Theorem 9.4 (Sinh-classif-set). For 𝑛 ≥ 1, the compo-
nents of (𝑛 + 1)-groups are equivalent to those of Sính𝑛-triples:

U≥0,≤𝑛+1

∗



0
≃



(𝐺 : U≥0,≤𝑛

∗

)
× (𝐻 : 𝐺 → Ab) × 𝐻𝑛+2 (𝐺,𝐻 )





0

.

Proof. After applying ∥−∥
0
to Theorem 9.2, we get the

desired equivalence from the general interaction between

truncation and Σ-types [29, Theorem 7.3.9]. □

By composing the equivalence Ob(c2Grp) ≃ Ob(2Type∗0)
obtained from Theorem 6.11 with Theorems 9.2 and 9.4, we

get the following characterizations of coherent 2-groups.

Theorem 9.5 (Type-eqiv-main). The type of coherent 2-
groups is equivalent to the type of untruncated Sính triples,
and the components of coherent 2-groups are equivalent to the
components of Sính triples.

10 Conclusion and open questions
Working in HoTT, we gave two algebraic classifications of

pointed connected 2-types–the types corresponding to 2-

groups under the homotopy hypothesis. The first was a (bi-

adjoint) biequivalence between such types and coherent 2-

groups (defined as monoidal groupoids with inverses). From

this biequivalence we produced a path between these bicate-

gories via univalence. The second classification was a type

equivalence between pointed connected 2-types and Sính
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triples (which are defined via group cohomology). Our proof

of this equivalence extended to 𝑛-groups for all 𝑛 ≥ 2.

Our work raises some open questions. First, the infinite

loop space of an abelian group 𝐺 is built from 𝐾 (𝐺, 1) with
suspensions and truncations [17, Section 5]. Can we build

the double delooping of a braided 2-group and the infinite

loop space of a symmetric 2-group from K2 in a similar

way? We then would seek a tractable recursion principle

for the higher deloopings to build—as asserted by the homo-

topy hypothesis—biequivalences between braided 2-groups

and pointed 1-connected 3-types and between symmetric

2-groups and pointed 𝑛-connected (𝑛 + 2)-types for all 𝑛 ≥ 2.

On the Sính-triple side, we have not classified maps of (un-

truncated) Sính triples. We define such a map (𝐺1, 𝐻1, 𝜅1) →
(𝐺2, 𝐻2, 𝜅2) as a triple consisting of 𝜃1 : 𝐺1 →∗ 𝐺2, 𝜃2 :

(𝑢 : 𝐺1) → 𝐻1 (𝑢) →Ab 𝐻2 (𝜃1 (𝑢)), and 𝜓 : 𝐾 (𝜃2 (−), 3) ◦
𝜅1 ∼∗ 𝜅2 ◦ 𝜃1 where ∼∗ is the type of pointed homotopies

between pointed sections. Such maps form a 1-type since

the type of 𝜓 is 1-truncated by [7, Theorem 4.2]. Can we

complete the bicategorical structure on the Sính triples? If

so, can we promote Theorem 9.2 to a biequivalence?
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A The short definition of 2-group
morphism

Let 𝐺1 and 𝐺2 be 2-groups and 𝑓0 : 𝐺1 → 𝐺2 be a function

between their underlying types. We prove that the func-

tion (𝜕), found in Note 4.6, is an equivalence of types. This

amounts to showing that if 𝑓0 has the data 𝐷𝑠 making up

the short definition of a 2-group morphism, then it also has

unique preservation data for id, which we call 𝑃𝑢 , and unique
preservation data for (−)−1, which we call 𝑃𝑖 .

1

Suppose that 𝑓0 has the data 𝐷𝑠 . The data 𝑃𝑢 consists of a

path 𝑢 : id = 𝑓0 (id) and commuting diagrams for each 𝑥 : 𝐺1:

𝑓0 (𝑥) 𝑓0 (𝑥) ⊗ id

𝑓0 (𝑥 ⊗ id) 𝑓0 (𝑥) ⊗ 𝑓0 (id)

𝑓0 (𝑥) id ⊗𝑓0 (𝑥)

𝑓0 (id ⊗𝑥) 𝑓0 (id) ⊗ 𝑓0 (𝑥)

ap𝑓
0

(𝜌 (𝑥 ) )

𝜌 (𝑓0 (𝑥 ) )

ap𝑓
0
(𝑥 )⊗− (𝑢 )

𝜇𝑥,id

ap𝑓
0

(𝜆 (𝑥 ) )

𝜆 (𝑓0 (𝑥 ) )

ap−⊗𝑓
0
(𝑥 ) (𝑢 )

𝜇id,𝑥

𝑟𝑢 (𝑥 )

ℓ𝑢 (𝑥 )

1
The only reference we have found mentioning that it’s possible to recover

𝑃𝑢 and 𝑃𝑖 simultaneously is [10, Section 2.3]. The author, however, leaves

the proof to the reader.

The data 𝑃𝑖 consists of a path 𝑖𝑥 : 𝑓0 (𝑥)−1 = 𝑓0 (𝑥−1) and
commuting diagrams for each 𝑥 : 𝐺1:

𝑓0 (𝑥) ⊗ 𝑓0 (𝑥)−1 𝑓0 (𝑥) ⊗ 𝑓0 (𝑥−1) 𝑓0 (𝑥 ⊗ 𝑥−1)

id 𝑓0 (id)

𝑓0 (𝑥)−1 ⊗ 𝑓0 (𝑥) 𝑓0 (𝑥−1) ⊗ 𝑓0 (𝑥) 𝑓0 (𝑥−1 ⊗ 𝑥)

id 𝑓0 (id)

ap𝑓
0
(𝑥 )⊗− (𝑖𝑥 )

rinv(𝑓0 (𝑥 ) )

𝜇
𝑥,𝑥−1

ap𝑓
0

(rinv(𝑥 ) )

𝑢

ap−⊗𝑓
0
(𝑥 ) (𝑖𝑥 )

linv(𝑓0 (𝑥 ) )

𝜇
𝑥−1,𝑥

𝑢

ap𝑓
0

(linv(𝑥 ) )

𝑟𝑖 (𝑥 )

ℓ𝑖 (𝑥 )

Both 𝑓0 (𝑥) ⊗ − : 𝐺2 → 𝐺2 and − ⊗ 𝑓0 (𝑥) : 𝐺2 → 𝐺2 are

equivalences of types [mu-pre-iso and mu-post-iso]. Thus,

we have a unique choice of 𝑢 satisfying 𝑟𝑢 (id). Moreover, we

have a unique choice 𝑖right of 𝑖 satisfying 𝑟𝑖 and, separately, a

unique choice 𝑖left of 𝑖 satisfying ℓ𝑖 .

We first recover 𝑃𝑢 . Let 𝑥 : 𝐺1. As ℓ𝑢 and 𝑟𝑢 are families

of propositions, it suffices to prove our choice of 𝑢 satisfies

ℓ𝑢 (𝑥) and 𝑟𝑢 (𝑥). First, we show that 𝑟𝑢 (id) implies ℓ𝑢 (𝑥) [rho-
to-lam]. Second, we show that ℓ𝑢 (𝑥) implies 𝑟𝑢 (𝑥) [lam-to-

rho], so that 𝑟𝑢 (id) implies both 𝑟𝑢 (𝑥) [rhoid-to-rho] and
ℓ𝑢 (𝑥). The formal proofs of both steps give the details with

explicit equational reasoning, which largely matches a pen-

and-paper proof thanks to Agda’s instance search.

It remains to recover 𝑃𝑖 . To do so, we take 𝑖right and show

that it satisfies ℓ𝑖 in the presence of 𝑃𝑢 , whichwe have already

recovered. (We could switch the roles of 𝑟𝑖 and ℓ𝑖 .) We refer

the reader to either our mechanized proof [rinv-to-linv] or

[4, Theorem 6.1] for the details.

Remark A.1. By keeping track of indices of hom-types,

it’s easy to extend our proof to pseudofunctors of (locally

univalent) bigroupoids [22]. (A 2-group is a single-object

bigroupoid.) This means that a pseudofunctor 𝐹 : B → C of

bigroupoids is simply a 2-semifunctor [6, Chapter 5], which
consists of a function 𝐹0 : Ob(B) → Ob(C), an action

𝐹1 : homB (𝑎, 𝑏) → homC (𝐹0 (𝑎), 𝐹0 (𝑏)) on 1-cells, and a

family of 2-cells 𝐹𝑐 (𝑓 , 𝑔) : 𝐹1 (𝑔 ◦ 𝑓 ) = 𝐹1 (𝑔) ◦ 𝐹1 (𝑓 ) that
respects the associator.

B Coherence conditions for Step 1 of
Theorem 6.11

We verify that 𝜉1 satisfies the relevant coherence conditions.

In the case of unitors, we want to prove that the following
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square commutes for each pointed connected 2-type 𝑋 :

id𝑋 ◦𝜉0 (𝑋 ) 𝜉0 (𝑋 ) ◦ K2 (Ω(id𝑋 ))

𝜉0 (𝑋 ) 𝜉0 (𝑋 ) ◦ idK2 (Ω (𝑋 ) )

𝜉1 (id𝑋 )

left unitor

right unitor

composite id preservation

By the SIP for pointed homotopies, this amounts to a ho-

motopy 𝑀1 (𝑋 ) between the homotopies underlying the 2-

cells in the square along with a dependent path𝑀2 (𝑋 ) over
𝑀1 (𝑋 ) between the corresponding proofs of pointedness.

We define 𝑀1 (𝑋 ) by applying Lemma 6.5 to base∼∼ := refl
and loop∼∼

:= 𝑀1 (𝑋 )- loop. Here, for each loop 𝑝 : 𝑥0 = 𝑥0,

𝑀1 (𝑋 )- loop(𝑝) is a path between two homotopy-naturality

squares at loop(𝑝)—call themNatSq1 andNatSq2 , as in Fig. 10.
Each of the upper three (hence bottom three) paths of the

upper square in Fig. 10 reduces to refl by the base compu-

tation rule of K2-induction. To build 𝑀1 (𝑋 )- loop(𝑝), we

use Lemma 3.2 to decompose NatSq1 into three paths 𝐿1 (𝑝),
𝐿2 (𝑝), and 𝐿3 (𝑝) corresponding to the three homotopy natu-

rality sub-squares shown in Fig. 10, from left to right [KLoop-

ptr-idf-aux1]. By the typal 𝛽-rule of Lemma 6.4, these paths

fit into the trio of commuting diagrams in Fig. 11 (which

are mechanized at [KLoop-ptr-idf-aux0]). We further adjust

𝐿1 (𝑝) by rewriting the middle path

apidΩ (𝑋 )
(𝑝) = apfun(𝜉0 (𝑋 ) ) (loop(apidΩ (𝑋 )

(𝑝)))
of𝐻1 (𝑓 )- loop(𝑝) via homotopy naturality as in Fig. 12. Now,

notice thatNatSq2 is trivial. Thus, we can derive𝑀1 (𝑋 )- loop(𝑝)
by proving the composition of 𝐿1 (𝑝), 𝐿2 (𝑝), and 𝐿3 (𝑝) is triv-
ial. We do so by repeatedly cancelling point 𝛽-rules [KLoop-

ptr-idf-coher]. Finally, our definition of𝑀1 (𝑋 ) makes it triv-

ial to define𝑀2 (𝑋 ), thereby completing the coherence with

the unitors [KLoop-coher-unit]. The coherence with the as-

sociator is similar but more complicated [KLoop-PT-assoc].
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base base base base

base base base base

base base

base base

𝐻1 (id𝑋 ,base)

apfun(𝜉
0
(𝑋 ) ) (loop(𝑝 ) )

via 2c-actK2
(Ω- id𝑋 , base) id preservation of K2

apfun(𝜉
0
(𝑋 ) ) (loop(𝑝 ) )

𝐻1 (id𝑋 ,base) via 2c-actK2
(Ω- id𝑋 , base) id preservation of K2

refl

apfun(𝜉
0
(𝑋 ) ) (loop(𝑝 ) ) apfun(𝜉

0
(𝑋 ) ) (loop(𝑝 ) )

refl

𝑁𝑎𝑡𝑆𝑞1 (outer rectangle)

NatSq2

Figure 10: type of𝑀1 (𝑋 )- loop(𝑝), where 2c-actK2
is as in Example 6.6 (Note: 𝑁𝑎𝑡𝑆𝑞1 fills the outer diagram.)

apfun(id𝑋 ◦𝜉0 (𝑋 ) ) (loop(𝑝)) apfun(𝜉0 (𝑋 )◦K2 (Ω (id𝑋 ) ) ) (loop(𝑝))

apfun(𝜉0 (𝑋 )◦K2 (Ω (id𝑋 ) ) ) (loop(𝑝)) apfun(𝜉0 (𝑋 ) ) (loop(𝑝))

apfun(𝜉0 (𝑋 ) ) (apfun(K2 (idΩ (𝑋 ) ) ) (loop(𝑝)))

apfun(𝜉0 (𝑋 ) ) (apfun(K2 (idΩ (𝑋 ) ) ) (loop(𝑝))) apfun(𝜉0 (𝑋 ) ) (loop(𝑝))

𝐻1 (𝑓 )- loop(𝑝 )

𝐿1 (𝑝 )

via K2 (Ω (id𝑋 ) )’s point 𝛽-rule

𝐿2 (𝑝 )

via K2 (idΩ (𝑋 ) )’s
point 𝛽-rule

𝐿3 (𝑝 )

via K2 (idΩ (𝑋 ) )’s point 𝛽-rule

Figure 11: rewriting 𝐿1 (𝑝), 𝐿2 (𝑝), and 𝐿3 (𝑝), respectively

apidΩ (𝑋 )
(𝑝) 𝑝

apfun(𝜉0 (𝑋 ) ) (loop(apidΩ (𝑋 )
(𝑝))) apfun(𝜉0 (𝑋 ) ) (loop(𝑝))

apid is identity

𝜉0 (𝑋 )’s point
𝛽-rule at apidΩ (𝑋 )

(𝑝 )
𝜉0 (𝑋 )’s point
𝛽-rule at 𝑝

apid is identity

Figure 12: rewriting the middle path of 𝐻1 (𝑓 )- loop(𝑝)
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