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1 Introduction

Working in Book HoTT, we construct a fully verified biequivalence between the (2, 1)-category of
coherent 2-groups [2] and the (2, 1)-category of pointed (0-)connected 2-types. We also obtain an
equality between them as a corollary. This biequivalence has been suggested at a few places in the
literature. Inside HoTT, [4, Section 9] proposes it as a 2-dimensional generalization of the equivalence
the authors construct between Grp and pointed connected 1-types. It also was suggested in the
classical setting by [2, Section 8.2].

Indeed, the biequivalence we construct generalizes the 1-dimensional equivalence. It consists of
two broad steps. First, we construct the delooping of a coherent 2-group G as a HIT generalizing
the first Eilenberg-MacLane space [9]. This defines a function from the type of coherent 2-groups
to the type of pointed connected 2-types. Second, we equip this function with the structure of
a pseudofunctor and prove that it forms a biequivalence [1, Definition 2.17] with the loop space
pseudofunctor. Each step is purely algebraic but involves several huge computations.

1



In the rest of this paper, we review basic notions of bicategory theory while focusing on the
(2, 1)-category of coherent 2-groups and the (2, 1)-category of pointed connected 2-types (Section 2).
Afterward, we outline the major computations involved in the two steps of the biequivalence (Sections 3
and 4). Finally, we deduce from the biequivalence an identity between the (2, 1)-categories in question
via univalence and a bit of wild category theory (Section 5). This outline also will serve as a roadmap
for our Agda codebase [7], which has the complete biequivalence and the identity we derive from it.

2 Bicategories

In this work, bicategory means (2, 1)-category whose 2-cells are paths. This definition is a special
case of the traditional one, in which 2-cells are simply elements of a family of sets [1, Definition 2.1].
In particular, the theory of [1] applies to our theory of bicategories. Our theory is noticeably simpler
since the identity type already carries much of the data and satisfies many of the properties required
of 2-cells.

Definition 2.0.1 ([7, BicatStr]). A bicategory (relative to universes U and V) consists of a type
Ob : U of objects together with

• a doubly indexed family hom of 1-types in V over Ob, whose elements are called morphisms or
1-cells

• a composition operation ◦ : hom(b, c) → hom(a, b) → hom(a, c) for all a, b, c : Ob

• an identity morphism ida for each a : Ob together with two 2-cells, called the right unitor and
left unitor, witnessing that each identity morphism is a left unit and a right unit, respectively,
for ◦.

• a 2-cell, called the associator, witnessing that ◦ is associative and satisfying both the triangle
identity with the unitors and the pentagon identity.

Remark 2.0.2. The structure of a bicategory on Ob in the sense of Definition 2.0.1 is equivalent to
the structure of a locally univalent bicategory in the sense of [1, Definition 3.1] where all 2-cells are
invertible.

Definition 2.0.3 ([7, AdjEq]). Let C be a bicategory. Let a, b : Ob(C) and f : homC(a, b). We
say that f is an adjoint equivalence if we have a morphism g : homC(b, a), 2-cells η : g ◦ f = ida and
ϵ : f ◦ g = idb, and two triangle-like identities. We denote the type of adjoint equivalences between a
and b by AdjEquiv(a, b).

Example 2.0.4. We have the bicategory 2Type∗
0 of pointed connected 2-types and pointed maps [7,

Ptd-bc]. The fact that each of its hom-types is 1-truncated follows from [4, Corollary 4.3], which we
have mechanized at [7, PtdFibration].

Example 2.0.5. We have the bicategory 2Grp of (coherent) 2-groups and 2-group morphisms. A
2-group is a monoidal category where, from the viewpoint of a monoidal category as a single-object

2

https://github.com/PHart3/2-groups-agda/blob/main/Bicats/Bicategory.agda#L10
https://github.com/PHart3/2-groups-agda/blob/main/Bicats/AdjEq.agda
https://github.com/PHart3/2-groups-agda/blob/main/Two-groups/Bicat-stuff/Ptd-bc.agda
https://github.com/PHart3/2-groups-agda/blob/main/HoTT-Agda/core/lib/types/PtdFibration.agda


bicategory, every object is equipped with an adjoint equivalence. Explicitly, given a universe U , a
2-group relative to U [7, CohGrp] is a 1-type G in U equipped with

• a basepoint id

• a binary operation ⊗ : G → G → G, called the tensor product

• a right unitor ρ, a left unitor λ, and an associator α for ⊗

• a triangle identity and a pentagon identity

• an inverse operation (−)−1 : G → G

• paths linvx : x−1 ⊗ x = id and rinvx : x⊗ x−1 = id for each x : G such that linv and rinv satisfy
two zig-zag identities.

Remark 2.0.6. A 2-group is the same as a coherent 2-group object [2, Definition 7.1] in the bicategory
of 1-types.

A 2-group morphism G1 → G2 is a function f0 : G1 → G2 equipped with a family of paths
µx,y : f0(x) ⊗ f0(y) = f0(x⊗ y) that respects the associator [7, CohGrpHomStr].

Note 2.0.7. Our notion of 2-group morphism is surprisingly short: a morphism of the underlying
coherent semigroups. The correct notion must preserve all data of a 2-group, not just the tensor
product and the associator [7, CohGrpHomStrFull]. To justify the short definition, we prove that for
each function f0 : G1 → G2 between the underlying types of 2-groups, the forgetful function

fully explicit notion on f0 → short notion on f0 (ForgMap(f0))

is an equivalence [7, 2GrpHomEq]. We include the de-formalized proof of this equivalence in Section A.
The short definition is highly valuable as it lets us define the classifying space of a 2-group G as a
HIT K2(G) with fewer constructors (Section 3), thereby making induction on K2(G) much simpler.

Note 2.0.8. By the structure identity principle (SIP) [11, The structure identity principle], 2-cells
between 2-group morphisms f, g : G1 → G2 are equivalent to natural isomorphisms between f and
g. A natural isomorphism is a homotopy fun(f) ∼ fun(g) between the underlying functions that
commutes with the tensor product [7, 2Grp]. For example, we build the unitors and associator for
2Grp via natural isomorphisms [7, 2SGrpMap].

Example 2.0.9 ([7, Hmtpy2Grp]). For every pointed 2-type X, the loop space Ω(X) equipped
with path composiiton has the structure of a 2-group, called the fundamental 2-group of X. Also, for
each function f : X →∗ Y between pointed 2-types, we have a morphism Ω(f) : Ω(X) → Ω(Y ) of
2-groups. This action on morphisms preserves both the identity map and composition of maps.

Example 2.0.10 ([7, PostMultMap]). Let G be a 2-group and g : G. The function post-multg :
G → G defined by x 7→ x⊗ g is a 2-group morphism.
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Example 2.0.11. Let X be a type. The type X ≃ X of self-equivalences is a coherent semigroup [7,
≃-2SGrp]. The function univX : (X ≃ X) → (X = X) is a morphism of coherent semigroups [7,
ua-2SGrpMap].

We end this section by providing, via the SIP, sufficient conditions for morphisms to be adjoint
equivalences in the two bicategories we care about. Note that Note 2.0.7 is essential for deriving this
result for 2Grp.

Lemma 2.0.12 ([7, AdjEq-exmps]).

(1) For every morphism f in 2Type∗
0, if its underlying function fun(f) is an equivalence of types,

then it is an adjoint equivalence.

(2) For every morphism f in 2Grp, if its underlying function fun(f) is an equivalence of types,
then it is an adjoint equivalence.

3 Delooping a 2-group

The first Eilenberg-MacLane space of a group H, also known as the classifying space of H, is defined
as the 1-truncated HIT K(H, 1) generated by base : K(H, 1) and loop : H → base = base along with
a higher path constructor loop-comp witnessing that loop is a group morphism H → Ω(K(H, 1)).
Let U be a universe and G be a 2-group relative to U . We define the classifying space of a 2-group G
as the 2-truncated HIT K2(G) generated by base : K2(G) and loop : G → base = base along with
two higher path constructors loop-comp and loop-assoc witnessing that loop is a 2-group morphism
G → Ω(K2(G)) [7, Delooping]. To state the induction principle, we need higher dependent paths
for the input data corresponding to loop-comp and loop-assoc. Such notions are defined by path
induction, and the definitions we choose let us visualize higher dependent paths as fillers of hollow
2-dimensional and 3-dimensional cylinders [7, PathPathOver]. The recursion principle, derived from
the induction principle, states that K2(G) is initial in the wild category of pointed 2-types X∗

equipped with a 2-group morphism G → Ω(X∗). Explicitly, for every pointed 2-type X∗ := (X,x0)
together with a 2-group morphism φX∗ : G → Ω(X∗), we have a function Mφ : K2(G) → X that
satisfies Mφ(base) ≡ x0 and is equipped with a natural isomorphism

G

Ω(K2(G)) Ω(X∗)

loop φX∗

Ω(Mφ)

(ρφ,ρ̃φ)

of 2-group morphisms. We call ρφ the point computation rule and ρ̃φ the tensor computation rule.

Lemma 3.0.1 ([7, K2-is-conn]). The type K2(G) is connected.

A fundamental property of K(H, 1) is that it is the delooping of H, i.e., that loop is a group
isomorphism. We want to show that, similarly, K2(G) is the delooping of G. By Lemma 2.0.12(2), it
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suffices to show that loop is an equivalence of types. We adapt the encode-decode proof used for
K(H, 1) [9, Theorem 3.2] to our higher dimensional setting.

We define codes : K2(G) → U≤1 by recursion on K2(G) so that pr1(codes(base)) ≡ G [7, codes],
where U≤1 denotes the type of all 1-truncated types in U . Since G is 1-truncated by definition, we
may take it as the basepoint of U≤1. To construct codes, it suffices to construct a 2-group morphism
ζ : G → Ω(U≤1, G). Define ζmap : G → (G = G) by mapping g to the equivalence

post-multg : G
≃−→ G

post-multg(x) := x⊗ g

and then applying univ to post-multg. Both post-mult and univ are morphisms of coherent semigroups
(Examples 2.0.10 and 2.0.11, respectively), and we give ζmap the composite of their morphism
structures. Now, let codes0 := pr1 ◦ codes and define

encode :
∏

z:K2(G)

base = z → codes0(z)

encode(z, p) := transpcodes0(p, idG)

This gives us a function encode(base) : Ω(K2(G)) → G [7, encode].
We want to show that loop : G → Ω(K2(G)) is an equivalence with inverse encode(base). As in

[9], encode(base) is a left inverse of loop, mechanized in [7, encode-loop]. The main ingredient for the
proof of this is the chain of paths

transpcodes0(loop(x), y)

coe(appr1
(apcodes(loop(x))), y)

coe(ζmap(x), y)

y ⊗ x

via path induction on loop(x)

via codes’s point computation rule

univalence axiom

for all x, y : G, denoted by transp-codes(x, y). This term also plays an important role in the next
part of the proof, for which we record the following coherence property.
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Lemma 3.0.2 ([7, coe-β-mu]). For all x, y, z : G, the following diagram commutes.

coe(univ(post-mult(x⊗ y)), z) z ⊗ (x⊗ y)

coe(univ(post-mult(y) ◦ post-mult(x)), z) (z ⊗ x) ⊗ y

coe(univ(post-mult(y)), z ⊗ x)

coe(univ(post-mult(x)) · univ(post-mult(y)), z) coe(univ(post-mult(y)), coe(univ(post-mult(x)), z))

univalence axiom at post-mult(x ⊗ y)

associativity of ⊗

univ respects composition

associativity of ⊗

univalence axiom at post-mult(y)

coe respects
composition

univalence axiom at post-mult(x)

Next, we show that encode(base) is a right inverse of loop. We want a homotopy η : loop ◦
encode(base) ∼ idΩ(K2(G)). To this end, we will define

decode :
∏

z:K2(G)

codes0(z) → base = z

by induction on K2(G) so that decode(base) ≡ loop. By path induction, it then follows that
decodez(encodez(p)) = p for all z : K2(G) and p : base = z because every 2-group morphism, such as
loop, preserves the identity. This gives us η, as desired.

We now describe the construction of decode [7, Decode-def], which is much more complex than
the 1-dimensional case. Here, the target of the induction is the function type codes0(z) → base = z

for all z : K2(G). In such a situation, we have the following form of the induction principle, which is
useful for computations.

Lemma 3.0.3 ([7, PPOverFun]). Let B1 be a type family over K2(G) and B2 a family of 1-types
over K2(G). Suppose we have a function ψbase : B1(base) → B2(base) together with

• for each x : G, a function ψloop(x) :
∏
b:B1(base) ψbase(transpB1(loop(x), b)) = transpB2(loop(x), ψbase(b))

• for all x, y : G and b : B1(base), a commuting diagram of paths

ψbase(transpB1(loop(x⊗ y), b))

ψbase(transpB1(loop(x) · loop(y), b)) transpB2(loop(x⊗ y), ψbase(b))

ψbase(transpB1(loop(y), transpB1(loop(x), b))) transpB2(loop(x) · loop(y), ψbase(b))

transpB2(loop(y), ψbase(b)) transpB2(loop(y), transpB2(loop(x), ψbase(b)))

via loop-comp(x, y) ψloop(x⊗y,b)

transp respects path composition

ψloop(y,transpB1 (loop(x),transpB1 (loop(x),b)))

via loop-comp(x, y)

via ψloop(x, b)

transp respects path composition

ψloop-comp(x, y, b)

6

https://github.com/PHart3/2-groups-agda/blob/main/Two-groups/Deloop/Decode0.agda#L51
https://github.com/PHart3/2-groups-agda/blob/main/Two-groups/Deloop/Decode-def.agda
https://github.com/PHart3/2-groups-agda/blob/main/HoTT-Agda/core/lib/cubical/PPOverFun.agda


Then we have a function ψ :
∏
x:K2(G) B1(x) → B2(x) that satisfies ψ(base) ≡ ψbase.

Note that Lemma 3.0.3 avoids the input data for loop-assoc because the target of the induction is
a 1-type. By instantiating B1 with codes0(z) and B2 with base = z, Lemma 3.0.3 gives us a sufficient
condition for constructing decode, namely the data ψbase, ψloop, and ψloop-comp. Of course, we define
ψbase as loop. For all x, y : G, we define ψloop(x, y) as the chain of paths

loop(transpcodes0(loop(x), y))

loop(y ⊗ x)

loop(y) · loop(x)

transpz 7→base=z(loop(x), loop(y))

aploop(transp-codes(x,y))

loop-comp(y,x)−1

transp on constant endpoint

Finally, we construct ψloop-comp, whose presence is a key difference between our setting and that of
[9]. Let x, y, z : G. We want to prove that the outer diagram of (loop-comp-Diag), shown on the
next page, commutes.
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loop(transpcodes0(loop(y), transpcodes0(loop(x), z))) loop(transpcodes0(loop(x) · loop(y), z)) loop(transpcodes0(loop(x⊗ y), z))

loop(transpcodes0(loop(x), z) ⊗ y) loop((z ⊗ x) ⊗ y) loop(z ⊗ (x⊗ y))

loop(transpcodes0(loop(x), z)) · loop(y) loop(z ⊗ x) · loop(y)

transpbase=z(loop(y), loop(transpcodes0(loop(x), z))) (loop(z) · loop(x)) · loop(y)

transpbase=z(loop(y), loop(z ⊗ x))

transpbase=z(loop(y), loop(z) · loop(x)) loop(z) · loop(x) · loop(y) loop(z) · loop(x⊗ y)

transpbase=z(loop(y), transpbase=z(loop(x), loop(z)))

transpbase=z(loop(x) · loop(y), loop(z)) transpbase=z(loop(x⊗ y), loop(z))

transp respects
path composition

transp-codes-coher

via loop-comp(x, y)

ψloop

ψloop

hnat(transp-codes(x, z))

ψloop

transp respects path composition
via loop-comp(x, y)

hnat(transp-codes(x, z))

loop-assoc(z, x, y)

hnat(loop-comp(z, x))

via path induction

hnat(loop-comp(x, y))

(loop-comp-Diag)
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It remains to construct the homotopy transp-codes-coher, at the top of (loop-comp-Diag). This
homotopy fills

loop(transpcodes0(loop(x) · loop(y), z)) loop(transpcodes0(loop(x⊗ y), z))

loop(transpcodes0(loop(y), transpcodes0(loop(x), z))) loop(z ⊗ (x⊗ y))

loop(transpcodes0(loop(x), z) ⊗ y) loop((z ⊗ x) ⊗ y)

transp respects path composition

via loop-comp(x, y)

aploop(transp-codes(x⊗y,z))

aploop(transp-codes(y,transpcodes0 (loop(x),z))) associativity of ⊗

via transp-codes(x, z)

which is the image under loop of a diagram D in G. Thus, it suffices to fill D. By homotopy naturality
at transp-codes(x, z), the bottom left corner of D fits into the commuting square

transpcodes0(loop(y), transpcodes0(loop(x), z)) transpcodes0(loop(y), z ⊗ x)

transpcodes0(loop(x), z) ⊗ y (z ⊗ x) ⊗ y

via transp-codes(x, z)

transp-codes(y,transpcodes0 (loop(x),z)) transp-codes(y,z⊗x)

via transp-codes(x, z)

After we use this square to rewrite D, we rewrite each of the three paths making up transp-codes(x⊗
y, z), at the top right of D:

transpcodes0(loop(x⊗ y), z)

coe(appr1
(apcodes(loop(x⊗ y))), z)

coe(ζmap(x⊗ y), z)

z ⊗ (x⊗ y)

via path induction on loop(x ⊗ y)

via codes’s point computation rule

univalence axiom

Call these paths p0, p1, and p2, respectively. First, rewrite p0 with homotopy naturality:

transpcodes0(loop(x⊗ y), z) transpcodes0(loop(x) · loop(y), z)

coe(appr1
(apcodes(loop(x⊗ y))), z) transpcodes0(loop(x) · loop(y), z)

p0 hnat(loop-comp(x,y))

Second, rewrite p1 with codes’s tensor computation rule, mechanized at [7, codes-β-mu]. This rule
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gives us the commuting diagram

appr1
(apcodes(loop(x⊗ y))) ζmap(x⊗ y)

appr1
(apcodes(loop(x) · loop(y))) ζmap(x) · ζmap(y)

appr1
(apcodes(loop(x))) · appr1

(apcodes(loop(y))) ζmap(x) · appr1
(apcodes(loop(y)))

p1

via loop-comp(x, y)

via path induction on loop(x)

associativity of ⊗

via codes’s point
computation rule at x

via codes’s
point computation rule at y

Finally, rewrite p2 with Lemma 3.0.2.
Now, by routine (though messy) path algebra, we can prove that D commutes by cancelling the

loop-comp terms, codes’s point computation terms, the univalence terms, and the terms defined by
path induction on loop. This completes the definition of decode. Hence loop is an equivalence [7,
loop-equiv].

Remark 3.0.4. Our proof of delooping is an extension of [3, Section 4.3], which shows the result when
G is an (ordinary) group. The difference between our proof and that of [3] is that when G is a group,

• the target of the recursion defining codes is a 1-type, namely Set, and

• the construction of transp-codes-coher is trivial, because G is a set.

Our formalization, however, is completely separate from that of [3].

4 The delooping functor as a biequivalence

In this section, we make K2 into a pseudofunctor. Then we use Section 3 to show that, together
with the loop space pseudofunctor, the pseudofunctor K2 fits into a biequivalence between 2Grp
and 2Type∗

0.

Definition 4.0.1 ([7, PsfunctorStr]). Let C and D be bicategories. A pseudofunctor from C to D
is a function F0 : Ob(C) → Ob(D) together with

• a function F1 : homC(a, b) → homD(F0(a), F0(b)) for all a, b : Ob, called the action on morphisms

• a 2-cell Fid(a) : F1(ida) = idF0(a) for each a : Ob

• a 2-cell F◦(f, g) : F1(g ◦ f) = F1(g) ◦ F1(f) for all composable morphisms f and g

• coherence identities witnessing that F◦ commutes with the right unitors, with the left unitors,
and with the associators.
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Example 4.0.2. We equip the object function K2 : Ob(2Grp) → Ob(2Type∗
0) with the structure

of a pseudofunctor. Its action on morphisms [7, K2-map] is defined by sending G1
f−→ G2 to the

pointed map defined by K2-recursion on the composite 2-group morphism

G1 G2 Ω(K2(G2))

This action preserves the identity morphism [7, KFunctor-idf] as well as composition [7, KFunctor-
comp], with both preservation proofs defined by K2-induction in the form of Lemma 4.0.7, below.
We prove the coherence identities with unitors at [7, KFunctor-conv-unit] and with the associator at
[7, KFunctor-conv-assoc].

The action on 2-cells can be put in an extensional form 2c-actK2 taking natural isomorphisms of
2-group morphisms to pointed homotopies [7, apK2]. The function 2c-actK2 is defined by Lemma 4.0.7,
below.

Example 4.0.3. The loop space Ω forms a pseudofunctor 2Type∗
0 → 2Grp, whose object function

and actions of morphisms are defined as in Example 2.0.9. We prove the coherence identities for Ω at
[7, LoopFunctor-conv]. As for K2, the action on 2-cells can be put in an extensional form 2c-actΩ [7,
LoopFunctor-ap], which takes pointed homotopies to natural isomorphisms of 2-group morphisms. It
is defined by induction on pointed homotopies [7, ⊙hom-ind], a form of the SIP for pointed maps.

Lemma 4.0.4 ([7, Ω-fmap-ap-hnat]). Let f := (f0, fp), g := (g0, gp) : (X,x0) →∗ Y be morphisms
in 2Type∗

0. Let H := (H0, Hp) be a pointed homotopy between f and g. The underlying homotopy
of θH := 2c-actΩ(H) fits into a commuting pentagon

fun(Ω(f))(x) fun(Ω(g))(x)

f−1
p · apf (p) · fp g−1

p · apg(p) · gp

f−1
p ·

(
H0(x0) · apg(p) ·H0(x0)−1)

· fp

θH (x)

propositional β-rule
for Ω(f)

propositional β-rule
for Ω(g)

via hnat(p) via Hp

for each loop p : Ω(X).

For every bicategory C, we can form the identity pseudofunctor idC : C → C [7, idfBCσ]. Its object
function is the identity, as are its actions on 1-cells and 2-cells. We also can form the composite G ◦F
of pseudofunctors [7, ◦BCσ]. Its object function is the composite G0 ◦F0. Its action on morphisms is
G1 ◦ F1. Its action on 2-cells is apG1 ◦ apF1 .

Definition 4.0.5 ([7, Biequiv]). Let C and D be bicategories.

(1) Let F : C → D and G : D → C be pseudofunctors. A pseudotransformation from F to G

consists of
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• a component 1-cell η0(a) : F0(a) → G0(a) for each a : Ob(C)

• a 2-cell η1(f) making the square

F0(a) F0(b)

G0(a) G0(b)

F1(f)

η0(a) η0(b)

G1(f)

commute for all a, b : Ob(C) and f : homC(a, b).

• a coherence identity witnessing that η1 commutes with the unitors and one witnessing
that it commutes with the associators.

The type of such pseudotransformations is denoted by F ⇒ G.

(2) A biequivalence between C and D is a pseudofunctor F : C → D together with

• a pseudofunctor G : D → C

• a pseudotransformation τ1 : F ◦ G ⇒ idD each of whose components is an adjoint
equivalence in D

• a pseudotransformation τ2 : idC ⇒ G◦F each of whose components is an adjoint equivalence
in C.

Note 4.0.6.

• Our definition of pseudotransformation does not explicitly require η1 to commute with 2-cells.
For us, however, this property follows from homotopy naturality as 2-cells are paths.

• Our definition of biequivalence is a direct generalization of the 1-categorical notion. By [8,
Proposition 6.2.16], it is logically equivalent to the definition in terms of modifications [1,
Definition 2.17].

The next two lemmas follow from K2’s induction principle. The first gives us a way to build a
homotopy between two functions defined by K2-recursion. The second gives us a way to prove that
two such homotopies are themselves pointwise equal. The first lemma is useful for constructing 2-cells
in 2Type∗

0 required by Definition 4.0.5(1). The second lemma is useful for proving the coherence
identities also required by Definition 4.0.5(1).

Lemma 4.0.7 ([7, K-hom-ind]). Let G be a 2-group and X be a 2-type. Let f, g : K2(G) → X.
Given

base∼ : f(base) = g(base)

loop∼ :
∏
x:G

apf (loop(x)) · base∼ = base∼ · apg(loop(x))

loop-comp∼ : loop∼ commutes with G’s tensor product
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we have a homotopy H : f ∼ g satisfying H(base) ≡ base∼ and the propositional β-rule

• • • •

• • • •

hnat(loop(x)) loop∼(x)

between commuting squares for each x : G.

Lemma 4.0.8 ([7, K-hom2-ind]). Let G, X, f , and g be as in Lemma 4.0.7. Let H1, H2 : f ∼ g.
Suppose that we have an identity base∼∼ : H1(base) = H2(base) and a 3-dimensional path loop∼∼

• • • • • • •

•

• • • • • • •

H1(base) H2(base) H2(base) H1(base)

H1(base) H2(base) H2(base)−1 H1(base)−1

hnat(loop(x)) hnat(loop(x)) via base∼∼

Then we have a homotopy L : H1 ∼ H2 satisfying L(base) ≡ base∼∼.

The next result lets us build one of the families of adjoint equivalences required by Defini-
tion 4.0.5(2). (Section 3 provides the other such family.)

Note 4.0.9. Let X be a pointed connected 2-type. Define the pointed map φX : K2(Ω(X)) →∗ X

by K2-recursion on the identity 2-group morphism Ω(X) → Ω(X). By φX ’s point computation rule,
the triangle of types

Ω(X)

Ω(K2(Ω(X))) Ω(X)

loop id

fun(Ω(φX ))

commutes [7, LoopK-hom]. By Section 3, loop is an equivalence, so that fun(Ω(φX)) is one as well.
Since both X and K2(Ω(X)) are connected, it follows that φX is an equivalence [7, Loop-conn-equiv].

Theorem 4.0.10 ([7, Biequiv-main]). The pseudofunctors K2 and Ω form a biequivalence between
2Grp and 2Type∗

0.

Proof sketch.

Step 1: Construct τ1 : K2 ◦ Ω ⇒ id2Type∗
0
.

For each pointed connected 2-type X, define the pointed map η1
0(X) : K2(Ω(X)) →∗ X by K2-

recursion on the identity 2-group morphism Ω(X) → Ω(X). Let f : X →∗ Y be a morphism in
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2Type∗
0. We want a path η1

1(f) making the square of pointed maps

K2(Ω(X)) K2(Ω(Y ))

X Y

K2(Ω(f))

η1
0(X) η1

0(Y )

f

commute. By the SIP for pointed maps, it suffices to find a homotopy

H1(f) : fun(f) ◦ fun(η1
0(X)) ∼ fun(η1

0(Y )) ◦ fun(K2(Ω(f)))

between the underlying functions along with a dependent path H2(f) over H1(f) between the
corresponding proofs of pointedness. We define H1(f) by applying Lemma 4.0.7 to the data

base∼ := refl

loop∼ := H1(f)-loop

loop-comp∼ := defined at [7, SqKLoop-coher]

Here, H1(f)-loop(p) is defined as the chain of paths

apfun(f◦η1
0(X))(loop(p))

apfun(f)(p)

apfun(η1
0(Y ))(loop(apfun(f)(p)))

apfun(η1
0(Y )◦K2(Ω(f)))(loop(p))

via η1
0(X)’s point computation rule

via η1
0(Y )’s point computation rule

via K2(Ω(f))’s point computation rule

for each p : x0 = x0 where x0 denotes the basepoint of X. Our definition of H1(f) makes it trivial
to define H2(f). This completes the construction of η1

1(f) [7, SqKLoop].

We must verify that η1
1 satisfies the relevant coherence identities. In the case of unitors, we must

prove that

idX ◦η1
0(X) η1

0(X) ◦K2(Ω(idX))

η1
0(X) η1

0(X) ◦ idK2(Ω(X))

η1
1(idX )

left unitor

right unitor

composite of K2’s id
preservation with

Ω’s id preservation
(unitor-coher1)
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commutes for each pointed connected 2-typeX. By the SIP for pointed homotopies [7, ⊙→∼-ind], this
amounts to a homotopy M1(X) between the homotopies underlying the 2-cells in (unitor-coher1)
along with a dependent path M2(X) over M1(X) between the corresponding proofs of pointedness.1

We define M1(X) by applying Lemma 4.0.8 to the data

base∼∼ := refl

loop∼∼ := M1(X)-loop

Here, for each loop p : x0 = x0, M1(X)-loop(p) is an identity

base base base base

base base base base

base base

base base

H1(idX ,base)

apfun(η1
0(X))(loop(p))

via 2c-actK2 (ididΩ(X) , base) id preservation of K2

apfun(η1
0(X))(loop(p))

H1(idX ,base) via 2c-actK2 (ididΩ(X) , base) id preservation of K2

refl

apfun(η1
0(X))(loop(p)) apfun(η1

0(X))(loop(p))

refl

NatSq1

NatSq2

between homotopy-naturality squares at loop(p), where 2c-actK2 is as in Example 4.0.2. Note
that the upper three (hence bottom three) paths of the upper square reduce to refl by the base
computation rule of K2-induction. To build M1(X)-loop(p), we decompose NatSq1 into three loops

L1(p), L2(p), L3(p) : apfun(η1
0(X))(loop(p)) = apfun(η1

0(X))(loop(p))

corresponding to the three homotopy naturality sub-squares, from left to right [7, KLoop-ptr-idf-
aux1]. This decomposition is possible because homotopy naturality preserves path composiiton. By

1Although (unitor-coher1) is a proposition, the target of M1(X) is just a set. Hence the induction principle for
connected types does not apply here.
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the β-rule of Lemma 4.0.7, we have commuting diagrams

apfun(idX ◦η1
0(X))(loop(p)) apfun(η1

0(X)◦K2(Ω(idX )))(loop(p))

apfun(η1
0(X))(loop(apidΩ(X)

(p))) apfun(η1
0(X))(loop(p))

apfun(η1
0(X))(apfun(K2(Ω(idX )))(loop(p))) apfun(η1

0(X))(apfun(K2(idΩ(X)))(loop(p)))

apfun(η1
0(X))(apfun(K2(idΩ(X)))(loop(p))) apfun(η1

0(X))(loop(p))

apfun(η1
0(X))(apidK2(Ω(X))

(loop(p)))

H1(f-loop(p))

L1(p)

apid is identity

via K2(idΩ(X))’s point
computation rule

via K2(Ω(idX ))’s point
computation rule

L2(p)

via K2(idΩ(X))’s point
computation rule

L3(p)

apid is identity

which are mechanized at [7, KLoop-ptr-idf-aux0]. We further adjust L1(p) by rewriting its middle
path via homotopy naturality:

apidΩ(X)
(p) p

apfun(η1
0(X))(loop(apidΩ(X)

(p))) apfun(η1
0(X))(loop(p))

apid is identity

η1
0(X)’s point

computation rule
at apidΩ(X)

(p)
η1

0(X)’s point
computation rule at p

apid is identity

Returning to M1(X)-loop(p), notice that NatSq2 is trivial. Thus, we can derive M1(X)-loop(p)
by proving that the composition of L1(p), L2(p), and L3(p) is trivial. This proof is a routine
computation that works by repeatedly cancelling point computation rules [7, KLoop-ptr-idf-coher].
Further, our definition of M1(X) makes it trivial to define M2(X). This completes the coherence
identity with the unitors [7, KLoop-coher-unit]. The coherence identity with the associator, omitted
here, is similar but more complicated [7, KLoop-PT-assoc].

Step 2: Construct τ2 : id2Grp ⇒ Ω ◦K2.

For each 2-group G, define the 2-group morphism η2
0(G) := loop : G → Ω(K2(G)). Let f : G1 → G2

be a morphism of 2-groups. To define η2
1(f), we want a natural isomorphism

G1 G2

Ω(K2(G1)) Ω(K2(G2))

f

loop loop

Ω(K2(f))

I(f)
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of 2-group morphisms. We simply define the underlying homotopy of I(f) as K2(f)’s point
computation rule. The fact that this respects the tensor product follows from K2(f)’s tensor
computation rule [7, SqLoopK].

We must verify that η2
1 satisfies the relevant coherence identities. In the case of unitors, we must

prove that

Ω(K2(idG)) ◦ η2
0(G) η2

0(G) ◦ idG

idΩ(K2(G)) ◦η2
0(G) η2

0(G)

η2
1(idG)

right unitor
composite of Ω′s’s id

preservation with
K2’s id preservation

left unitor

(unitor-coher2)

commutes for each 2-group G. By the SIP for natural isomorphisms [7, natiso∼-ind], the identity
(unitor-coher2) amounts to a homotopy HG between the underlying homotopies of the associated
natural isomorphisms. For each x : G, we define HG(x) as the commuting outer diagram

loop(x)

apidΩ(K2(G))x
(loop(x)) apfun(K2(idG))(loop(x))

Ω(idK2(G))(loop(x)) Ω(K2(idG))(loop(x))

apid is identity
K2(idG)’s point

computation rule

refl

hnat(loop(x)) at K2’s
id preservation proof

refl

2c-actΩ(K2(idG),loop(x))

β-rule of Lemma 4.0.7

Lemma 4.0.4

where 2c-actΩ is as in Example 4.0.3. This completes the coherence identity with the unitors [7,
LoopK-PT-unit]. Again, the coherence identity with the associator, omitted here, is similar but
more complicated [7, LoopK-PT-assoc].

Step 3: Prove that both τ1 and τ2 are levelwise adjoint equivalences.

By Note 4.0.9, τ1 is a levelwise adjoint equivalence. By Section 3, τ2 is a levelwise adjoint equivalence.
This completes the desired biequivalence.

5 The delooping functor as an isomorphism

In this section, we show that the pseudofunctor Ω is an isomorphism of bicategories, i.e., it is an
equivalence on objects and is fully faithful. We do so by proving that every biequivalence between
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quasi-univalent bicategories is an isomorphism. Here the key step is showing that every equivalence
of wild categories is fully faithful. We then use univalence to prove that isomorphism is equivalent to
identity of bicategories. From this we immediately get an identity between 2Grp and 2Type∗

0.

Definition 5.0.1. Let C and D be bicategories and let F : C → D be a pseudofunctor. We say that F
is an isomorphism if F0 : Ob(C) → Ob(D) is an equivalence and F1 : homC(a, b) → homD(F0(a), F0(b))
is an equivalence for all a, b : Ob(C). We denote the type of isomorphisms between C and D by C ∼= D.

Lemma 5.0.2 ([7, Bicat-iso]). For all bicategories C and D, (C ∼= D) ≃ (C = D).

Proof. By the univalence axiom combined with the SIP.

Definition 5.0.3. A bicategory C is quasi-univalent if for all a, b : Ob(C), AdjEquiv(a, b) → (a = b).

By Lemma 2.0.12, both 2Grp and 2Type∗
0 are quasi-univalent [7, qu-2G and qu-Pt02]. It is

easy to see that every biequivalence between quasi-univalent bicategories is an equivalence on objects.
To see that it is an isomorphism, we must show that it is fully faithful, i.e., its action on 1-cells is a
family of equivalences. We show a more general result by moving to wild category theory.2

Definition 5.0.4. A morphism f : A → B in a wild category is an equivalence if it has a morphism
g : B → A and identities idA = g ◦ f and idB = f ◦ g.

Definition 5.0.5 ([7, WildNatTr]). Let C and D be wild categories.

• Let F,G : C → D be functors of wild categories and τ : F ⇒ G be a natural transformation.
We say that τ is a natural isomorphism if its component τ0(X) is an equivalence for each
X : Ob(C).

• Let F : C → D be a functor of wild categories. We say that F is an equivalence if it has a
functor G : D → C along with natural isomorphisms ϵ : F ◦ G ⇒ idD and η : idC ⇒ G ◦ F .
In this case, we say that F is a (compontent-wise) half-adjoint equivalence if it comes with a
triangle identity

ϵ0(F0(X)) ◦ F1(η0(X)) = idF0(X)

for all X : Ob(C).

Lemma 5.0.6.

(1) Every equivalence of wild categories can be promoted to a half-adjoint equivalence.

(2) Every half-adjoint equivalence of wild categories is fully faithful.

Proof. By arguments similar to the ones for 1-categories.

Corollary 5.0.7 ([7, Equiv-wc-ff]). Every equivalence of wild categories is fully faithful.
2See [5, Section 2.2] for the notions of wild category and functor of wild categories.
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Lemma 5.0.8 ([7, biequiv-to-iso]). Every biequivalence between quasi-univalent bicategories is an
isomorphism.

Proof. Let F be such a biequivalence. We have already observed that it’s an equivalence on objects.
Now, every bicategory has an underlying wild category, and clearly every biequivalence induces an
equivalence of the underlying wild categories with the same action on morphisms. Thus, by applying
Corollary 5.0.7 to the equivalence of wild categories induced by F , we find that F is fully faithful.

Theorem 5.0.9 ([7, 2Grp-Ptd02-eql]). The pseudofunctor Ω induces an identity 2Grp = 2Type∗
0

of bicategories.

Proof. By Lemma 5.0.2 combined with Lemma 5.0.8 and Theorem 4.0.10.

Remark 5.0.10. To prove Theorem 5.0.9, we only need that Ω is a pseudofunctor and that it forms a
1-coherent equivalence with K2. Notably, we do not use

• the coherence identities of τ1 or of τ2 required by Definition 4.0.5

• the coherence identities of K2 required by Definition 4.0.1.

This means that we can avoid the most difficult computations to construct the induced identity of
bicategories! Of course, we also can use path induction on this identity to show that Ω is part of a
biequivalence bieq-from-id.

Still, the explicit biequivalence provided by Theorem 4.0.10 is valuable. Indeed, besides the
inverses of its object function and its hom function, the form that bieq-from-id takes is quite hard to
recover in general.3 Even if fully recovered, it may be much less practical and desirable to work with
in the present case than the data provided by our explicit biequivalence.

A A short definition of a 2-group morphism

Let G1 and G2 be 2-groups and f0 : G1 → G2 be a function between their underlying types. We
prove that the function (ForgMap(f0)) is an equivalence of types. This amounts to showing that if f0

has the data Ds making up the short definition of 2-group morphism, then it also has both unique
preservation data for (−)−1, which we call Pi, and unique preservation data for id, which we call Pu.

Suppose that f0 has the data Ds. The data Pu consists of a path u : id = f0(id) such that the
diagrams

f0(x) f0(x) ⊗ id f0(x) id ⊗f0(x)

f0(x⊗ id) f0(x) ⊗ f0(id) f0(id ⊗x) f0(id) ⊗ f0(x)

apf0 (ρ(x))

ρ(f0(x))

apf0(x)⊗−(u) apf0 (λ(x))

λ(f0(x))

ap−⊗f0(x)(u)

µx,id µid,x

ru(x) ℓu(x)

3See [8, Theorem 7.4.1] for a way of building a biequivalence from a weak equivalence (hence from an isomorphism)
of bicategories. A type-theoretic version of this theorem is conjectured for univalent bicategories [1, Conjecture 5.7],
but it is not yet proven, to our knowledge.
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commute for each x : G1. The data Pi consists of a path ix : f0(x)−1 = f0(x−1) for each x : G1 such
that the diagrams

f0(x) ⊗ f0(x)−1 f0(x) ⊗ f0(x−1) f0(x⊗ x−1)

id f0(id)

f0(x)−1 ⊗ f0(x) f0(x−1) ⊗ f0(x) f0(x−1 ⊗ x)

id f0(id)

apf0(x)⊗−(ix)

rinv(f0(x))

µx,x−1

apf0 (rinv(x))

u

ap−⊗f0(x)(ix)

linv(f0(x))

µx−1,x

u

apf0 (linv(x))

ri(x)

ℓi(x)

commute for each x : G1. Note that both f0(x) ⊗ − : G2 → G2 and − ⊗ f0(x) : G2 → G2 are
equivalences of types [7, mu-pre-iso and mu-post-iso]. Thus, we have a unique choice of u satisfying
ru(id). Moreover, we have a choice ileft of i satisfying ℓi and a choice iright of i satisfying ri. (These
two choices happen to be unique.)

Let x : G1. As both ℓu and ru are families of propositions, to recover Pu, we just need to
show that our choice of u satisfies ℓu(x) and ru(x). First, we show that ru(id) implies ℓu(x) [7,
rho-to-lam]. Second, we show that ℓu(x) implies ru(x) [7, lam-to-rho], so that ru(id) implies both
ru(x) [7, rhoid-to-rho] and ℓu(x). The formal proofs of both steps give the details with explicit
equational reasoning, which largely matches a pen-and-paper proof thanks to Agda’a instance search.

It remains to recover Pi. This process works by making a unique choice of i satisfying ri and
then showing that this choice also satisfies ℓi. (We could switch the roles of ri and ℓi.) The process
relies on the data Pu, which we have already recovered. We refer the reader to either our mechanized
proof [7, rinv-to-linv] or [2, Theorem 6.1] for the details.4

Remark A.0.1. By keeping track of indices of hom-objects, it’s easy to extend our proof to pseudo-
functors of bigroupoids [10]. (A 2-group is precisely a single-object bigroupoid.) This means that a
pseudofunctor F : B → C of bigroupoids has a simple definition:

• a function F0 : B0 → C0

• an action F1 : B1(a, b) → C1(F0(a), F0(b)) on 1-cells

• an action on 2-cells respecting vertical composition

• a 2-cell Fc(f, g) : F1(g ◦ f) ⇒ F1(g) ◦ F1(f) for all composable 1-cells f and g such that Fc
respects the associator.

In other words, F is simply a 2-semifunctor.5
4The only reference we have found mentioning that it’s possible to recover Pi and Pu simultaneously is [6, Section

2.3]. The author, however, leaves the proof to the reader.
5See [3, Chapter 5] for a wonderful look at 2-semifunctors inside HoTT.
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https://github.com/PHart3/2-groups-agda/blob/main/Two-groups/2Grps/2Grp.agda#L97
https://github.com/PHart3/2-groups-agda/blob/main/Two-groups/2Grps/2GrpHom-recover/2GrpHom-rholam/2GrpHom5.agda#L60
https://github.com/PHart3/2-groups-agda/blob/main/Two-groups/2Grps/2GrpHom-recover/2GrpHom-lamrho/2GrpHom8.agda#L44
https://github.com/PHart3/2-groups-agda/blob/main/Two-groups/2Grps/2GrpHom-recover/2GrpHom-lamrho/2GrpHom9.agda#L46
https://github.com/PHart3/2-groups-agda/blob/main/Two-groups/2Grps/2GrpHom-recover/2GrpHom-inv/2GrpHom2.agda#L43
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