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Abstract
We examine how the standard proof that left adjoints preserve colimits behaves in the setting of wild
categories, a natural setting for synthetic homotopy theory inside homotopy type theory. We prove
that the proof may fail for adjunctions between wild categories. Our core contribution, however, is a
sufficient condition on the left adjoint for the proof to go through. The condition, called 2-coherence,
expresses that the naturality structure of the hom-isomorphism commutes with composition of
morphisms. We present two useful examples of this condition in action. First, we use it, along with
a new version of a known trick for homogeneous types, to show that the suspension functor preserves
graph-indexed colimits. Second, we show that every modality, viewed as a functor on coslices of a
type universe, is 2-coherent as a left adjoint to the forgetful functor from the subcategory of modal
types, thereby proving that this subcategory is cocomplete. Moreover, we have formalized our main
results in Agda.
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1 Introduction

In category theory, a basic and eminently useful fact is that left adjoints preserve colimits
(LAPC). We would like to invoke this classical theorem in the categorical setting of synthetic
homotopy theory, the axiomatic and usually type-theoretic study of topological spaces with
higher-dimensional structure. This would let us produce new universal constructions of
spaces from existing ones via purely algebraic methods. For synthetic homotopy theory
carried out in homotopy type theory (HoTT), the appropriate categorical setting is that
of wild categories, the canonical examples of which are type universes. This notion is a
type-theoretic interpretation of an (∞, 1)-category that specifies the data of a 1-category
but omits higher coherence data. Despite its naivete, this setting is expressive enough to
study concepts like (co)limits and adjunctions inside type theory.

We would like to port LAPC to adjunctions between wild categories. In particular, we
would like to port the “standard” proof, i.e., the proof one would expect to see based on
the category theory literature. This, however, turns out to be harder than one might hope
as we produce, inside HoTT, an example of such an adjunction for which the proof fails.
Nevertheless, we identify a sufficient condition for the proof to go through. Roughly, it
expresses that the adjunction data interacts nicely with the left adjoint’s (proof-relevant)
composition law. With this condition, combined with a higher version a known technique
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based on homogeneous types, we show that suspension, an example of a left adjoint, preserves
(graph-indexed) colimits, which has applications to the theory of acylic types and to homology
theory. We also show that every modality (such as truncation), viewed as a functor on
coslices of a type universe, satisfies the condition as a left adjoint to the forgetful functor. As
a result, the full wild subcategory of modal types inherits colimits from the ambient coslice.
Our proof of this fact differs from the one described for truncations by [24, Section 7.4]. Ours
is ultimately simpler by placing modalities in the general context of left adjoints.

The sufficient condition for the standard proof and its application to truncations were
mentioned briefly in prior work by Hart and Favonia [11, Remark 24]. In the present work,
we place these results in a wider context and explain, for the first time, how one proves them.
Moreover, we have formalized all our main results in Agda.

1.1 Motivation
To motivate our work, we should review the well-known proofs of LAPC from classical
category theory and explain why the one we choose is the right one to port to wild categories.
In addition, we should explain why the issue of porting it deserves the HoTT community’s
attention. We assume the reader is familiar with the basic notions of category theory.

Consider an adjunction L ⊣ R between 1-categories C and D. Let J be a small 1-
category. The classical theorem states that L preserves J -shaped colimits, and it has
two well-known proofs. The first requires that C and D admit global colimit functors
colimJ : CJ → C and colimJ : DJ → D [17, Section V.5]. The proof assumes these colimit
functors satisfy some coherence conditions that are automatically true for 1-categories (but not
for wild ones). It proceeds by using the uniqueness of left adjoints to define an isomorphism
φ : colimJ ◦LJ ∼= L ◦ colimJ . By unfolding the units of two composite adjunctions derived
from L ⊣ R and showing that φ commutes with these units, we can deduce that φ maps
the canonical cocone on colimJ (L(F )) to the induced one on L(colimJ (F )) for all diagrams
F : J → C. Proving that φ commutes in this way tacitly uses coherence conditions on
L ⊣ R that hold for 1-categories. Also, to conclude that L(colimJ (F )) is colimiting, the
proof tacitly uses the pentagon identity of D (which holds trivially) to transfer the colimiting
property of colimJ (L(F )).

Instead of requiring global colimit functors, the second proof starts with a specific colimit
colimJ (F ) of a diagram F : J → C and shows that L(colimJ (F )) is a colimit under L(F ).
Like the first proof, it secretly uses coherence conditions that hold for 1-categories, a point
we’ll return to. It argues that for all Y ∈ Ob(D), the following chain of isomorphisms with
C := colimJ (F ) equals the canonical post-composition map [19, Theorem 4.5.2]:

homD(L(C), Y ) ∼= homC(C,R(Y )) ∼= limi(homC(Fi, R(Y ))) ∼= limi(homD(L(Fi), Y )) (iso)

This means that the induced cocone on L(colimJ (F )) is indeed colimiting, i.e., L preserves
colimits. Besides avoiding global colimit functors, this proof argues in terms of hom-
isomorphisms, which are directly supplied by the usual definition of adjunctions between
wild categories. This helps us formulate further laws that such adjunctions must satisfy for
the proof to work. Finally, it doesn’t rely on bicategorical structure of C or D. Overall, the
second proof, which we call the standard proof, is better for wild categories.

So, what makes porting the standard proof an interesting problem? The chain of
isomorphisms (iso) is not hard to replay in wild category theory. Due to the secret coherence
conditions, however, proving that it equals the canonical map becomes a problem. In fact,
this equality is sometimes false. This problem is surprising at first glance and easy to miss. It
indicates a subtle mismatch between the data used to construct the cocone on L(colimJ (F ))



P. Hart 3

and the data used to construct a hom-type adjunction. (In our setting, hom is a family of
types, not necessarily sets.) The latter uses only the 0-dimensional data of L, data coming
from the underlying directed graph of C. The latter, however, also uses the composiiton law
of L, a 1-dimensional datum. This mismatch has strange effects: we can build two naturally
isomorphic left adjoints such that the standard proof goes through for one but not the other!
One of the chief virtues of this paper is that it puts this issue into the literature and sets the
record straight on the approach to LAPC that was expected to work.

1.2 Contributions
In this section, we explain the contributions of the paper and its organization. We start by
outlining the heart of the paper: a coherence condition on the data of a (hom-type) adjunction
between wild categories that guarantees the left adjoint preserves colimits. Afterward, we
outline two applications of this coherence condition in synthetic homotopy theory. We provide
links to corresponding formal proofs in Agda throughout the paper.

1.2.1 2-coherent left adjoints (Section 5)
Let C and D be wild categories. (We review the relevant concepts of wild category theory in
Section 4.) Our work centers on a new notion of coherence for adjunctions between C and D.
Such an adjunction consists of functors L : C → D and R : D → C together with a family of
type equivalences ψ :

∏
X:Ob(D)

∏
A:Ob(C) homD(L(A), X) ≃−→ homC(A,R(X)) and witnesses

natcod and natdom of the naturality of ψ in X and in A. The main point of this paper is
that, despite being a direct translation of the classical notion, this definition is not coherent
enough, due to the proof-relevance of the hom types. Indeed, it doesn’t let us prove left
adjoints preserve colimits, the defining property of left adjoints between locally presentable
categories. To solve this problem, we introduce the following coherence condition.

Given an adjunction between C and D, we say that L is 2-coherent if for all suitable
morphisms h1, h2, and h3, the identity ψ(h1) ◦ h2 ◦ h3 = ψ(h1 ◦ L(h2 ◦ h3)) obtained by
applying natdom multiple times equals the identity obtained by applying the composition law
L◦ of L. This nice interaction between natdom and L◦ holds automatically for 1-categories,
in which case these two equalities are proof-irrelevant. Also, it holds for adjunctions between
(∞, 1)-categories by virtue of the infinite tower of coherence data they encode. For wild
categories, however, adjunctions may fail to satisfy it.

We prove that 2-coherent left adjoints preserve colimits. The proof proceeds entirely by
algebraic manipulation of the adjunction data. Conceptually, it is quite direct as it relies
on just three foundational ingredients of HoTT: the naturality of homotopies, the triangle
identity of equivalences, and the structure identity principle.

During the proof, we must take care to eliminate the data witnessing that ψ is an
equivalence. Otherwise, we would need to include this data in the 2-coherence condition,
which would make it far less tractable. Indeed, the condition we arrive at is relatively simple
to check and thus quite useful in practice. We just need to know how to compute natdom
and L◦. In Sections 1.2.2 and 1.2.3, we outline natural examples of left adjoints along with
methods for proving that they are 2-coherent.

1.2.2 Suspension preserves colimits (Section 6)
The suspension endofunctor Σ : U∗ → U∗ on the wild category of pointed types is critical to
synthetic homotopy theory. For a while, it has been known that Σ is left adjoint to the loop
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space functor Ω in HoTT. Its preservation of colimits has been expected to follow from LAPC
in the usual way. Yet, this paper shows that the usual way requires a coherence between the
adjunction Σ ⊣ Ω and Σ’s composition law, which makes the proof trickier than expected.

We verify that this coherence holds, i.e., that Σ is 2-coherent, thereby verifying that Σ
preserves colimits. In this case, the final part of the proof of 2-coherence is infeasible to
perform directly. Instead, we get it for free by proving a new, higher version of Cavallo’s
trick for homogeneous types, which include all loop spaces.

This infeasibility highlights a major difference between our type system (Book HoTT)
and cubical type theory [25]. Unlike Book HoTT, cubical supports definitional β-rules for
path constructors in higher inductive types (HITs), such as suspension types. Such support
greatly simplifies the proof in question as it erases many postulated equalities that we must
carry around. Although constructions with HITs tend to be much harder in Book HoTT [18],
they are still valuable. Indeed, Book HoTT is a smaller system in the sense that it admits a
shallow embedding into cubical. More importantly, it has better established semantics: It
has models in all (∞, 1)-toposes [16, 22], whereas it’s not known whether the type theory
underlying Cubical Agda has a model Quillen equivalent to the category of topological spaces.

Inside HoTT, the fact that Σ preserves colimits has useful consequences. It implies that
the pointed acyclic types [3] are closed under colimits in U∗. Moreover, it puts on firm footing
a key step of the construction of stable homotopy as a homology theory [10, Corollary 2.4].

1.2.3 Colimits of modal types (Section 7)

Modalities are functors # : U → U# on a type universe U that arise as reflectors into
well-behaved subuniverses U# of U [21]. Although they are well-studied in HoTT [6, 7], their
interaction with colimits could be explained better. Since reflectors are by definition left
adjoints, we should expect that modalities preserve colimits. In the case of pushouts, this
property already has a proof for n-truncations ∥−∥n [24, Section 7.4], which are examples of
modalities, and it should extend easily to all graph-indexed colimits. The problem is that
this proof, which we call the Book proof, relies on the particular computational behavior of
the composition law of ∥−∥n. Thus, it doesn’t generalize to arbitrary left adjoints.

We offer a different proof of the same property by showing that every modality # is a
2-coherent left adjoint. By fitting into the general framework of LAPC, our proof gets rid of
the ad-hoc steps required by the Book proof. As a result, ours amounts to an easy application
of the induction principle of #. Moreover, we argue that ours matches the usual classical
proof for reflective subcategories because one would normally view colimit preservation here
as a special case of LAPC.1 Hence our proof has some advantages over the Book proof.

In fact, given a modality #, we prove the more general fact that the induced functor
#A : A/U → (A/U)# on an arbitrary coslice of U is 2-coherent. (We recover the original
case when A ≡ 0.) Previously, Hart and Favonia used that ∥−∥An is 2-coherent in order to
construct colimits of higher groups [11, Section 7]. Here we offer a concise proof that is
formulated for all modalities. Finally, we use the colimit preservation of #A together with
some general results about wild bicategories to build colimits in (A/U)# from those in A/U .
(The latter are explicitly constructed by [11, Section 5].)

1 This goes against [24, Section 7.7]’s claim that the Book proof matches the usual classical one.
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2 Additional related work

2.1 Wild category theory

Our work establishes a fundamental property of well-behaved adjunctions between wild
categories. It thus fits neatly into the rich theory of wild categories developed in HoTT [8, 13].
In particular, we continue the study of adding higher coherence data to wild-categorical
notions. So far, this study has focused on adding conditions internalizing the axioms of a
(2, 1)-category to the wild category itself [4, 5, 11]. The literature calls the resulting concept
wild 2-precategory, 2-coherent wild category, or wild bicategory. Many natural examples of
wild categories carry such structure, including coslices A/U of a (type) universe, which are
important to our work. In fact, we rely on the bicategorical structure of A/U in Section 7.

In this paper, we focus on a different aspect of 2-coherence: adding it to data between
wild categories. The ability to isolate which data we make 2-coherent is a virtue of wild
category theory: it offers a fine-grained understanding of the effects of higher coherences.

2.2 Homogeneous types

For the application to the suspension functor (Section 6), we build on the theory of ho-
mogeneous types in HoTT [2, Section 2]. These are pointed types that are independent of
basepoint in a strong sense. The key feature of such types is that proving identities about
pointed maps into them is considerably easier than about arbitrary pointed maps. This
feature, known as Cavallo’s trick, can make normally intractable computations in higher
path algebra tractable. For example, Axel Ljungström adapted Cavallo’s trick to show that
the smash product forms a symmetric monoidal product on the wild category of pointed
types [15]. We provide a different adaptation to handle the 2-coherence condition for the
suspension functor.

3 Background on type theory

We review some basic constructions in HoTT that are important for our work. We assume
the reader is familiar with Martin-Löf type theory (MLTT), the core type system of HoTT,
in the style of [24]. Notably, MLTT is sufficient for the core of our work: all of Section 5
is carried out in MLTT (with function extensionality). For Sections 6 and 7, we postulate
a simple class of HITs, pushout types [24, Section 6.8]. In particular, Section 6 focuses on
suspensions, a kind of pushout.

3.1 Type system

We review three constructions in our type system. The first is the function ap : (x = y)→
(f(x) = f(y)) defined by path induction for all functions f : X → Y and x, y : X. (We use =
for the identity type and ≡ for definitional equality.) If we view X as an ∞-groupoid, then
ap is the action of f on morphisms of X, thereby exhibiting f as a functor. A key property
of ap is the following naturality law.

▶ Lemma 1 (Homotopy naturality). Let f, g : X → Y . For all x, y : X, p : x = y, and
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H : f ∼ g, we have a commuting square of identities

f(x) g(x)

f(y) g(y)

H(x)

apf (p) apg(p)

H(y)

Here, f1 ∼ f2 :=
∏
x:X f1(x) = f2(x) for any dependent functions f1, f2 :

∏
x:X Y (x), called

the type of homotopies between f1 and f2. If f1 ∼ f2, we say that f1 and f2 are homotopic.
The second is the notion of half-adjoint equivalence. Let f : X → Y be a function. We

say that f is a half-adjoint equivalence, or just equivalence, if it has a function g : Y → X,
homotopies ηf : g ◦ f ∼ idX and ϵf : f ◦ g ∼ idY , and a triangle identity τf (x) : apf (ηf (x)) =
ϵ(f(x)) for every x : X. We may denote g by f−1. We use ≃ to refer to equivalences. A
function is an equivalence if and only if it is bi-invertible, i.e., has a right inverse s and a left
inverse r [24, Corollary 4.3.3].

The third is the transport function transpY :
∏
x,y:X

∏
p:x=y Y (x) → Y (y) for any type

family Y over X. This notion gives us a dependent version of ap: If f :
∏
x:X Y (x), then we

have a function apdf :
∏
x,y:X

∏
p:x=y transpY (p, f(x)) = f(y). As a result, we can generalize

Lemma 1 as follows: For all f, g : X → Y , x, y : X, p : x = y, and q : f(x) = g(x), we have a
path apf (p) · transpf∼g(p, q) = q · apg(p). The transport function is essential for stating the
induction principle of HITs, such as suspensions.

3.2 Suspensions

For all functions f : X → Y , the cofiber of f is the pushout of the span 1← X
f−→ Y . Let X

be a type. The suspension Σ(X) of X is the cofiber of X → 1. Explicitly, it is the pushout

X 1

1 Σ(X)

inr

inl

⌟

glue

where glue :
∏
x:X inl(∗) = inr(∗). We denote inl(∗) and inr(∗) by N and S, respectively, and

consider N the basepoint of Σ(X). The induction principle for Σ(X) states that for every
type family E over Σ(X) with elements

tN : E(N)
tS : E(S)

T :
∏
x:X

transpE(glue(x), tN) = tS

we have a function ind(E, tN, tS, T ) :
∏
z:Σ(X) E(z) that satisfies the definitional equalities

ind(E, tN, tS, T )(N) ≡ tN ind(E, tN, tS, T )(S) ≡ tS

and is equipped with an identity ρind(E,tN,tS,T )(x) : apdind(E,tN,tS,T )(glue(x)) = T (x). In the
non-dependent case, this principle is called the recursion principle.

Let (X,x0), (Y, y0) : U∗ be pointed types in a universe U and (f, f0) : (X,x0)→∗ (Y, y0) be
a pointed map. We have a pointed map Σ(f, f0) : Σ(X,x0)→∗ Σ(Y, y0) defined by recursion
on Σ(X), which trivially preserves the basepoint. Note that ρΣ(f,f0)(x) : apΣ(f,f0)(glue(x)) =
glue(f(x)) for each x : X.
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4 Wild category theory

In this section, we record essential concepts and constructions in wild category theory,
including adjunctions. The reader will notice that the basic definitions are naive translations
of their classical counterparts.

The key distinction between wild categories and the categories of [24, Section 9.1] is that
the latter have hom types that behave as sets, i.e., have trivial identity types, so that all
higher coherences between morphisms in them hold trivially. By contrast, wild categories
simply ignore such coherences. In synthetic homotopy theory, many wild categories have
hom types that are not sets, so developing the theory of wild categories is worthwhile.

▶ Definition 2. A wild category (relative to universes U and V) is a tuple consisting of a
type Ob : U of objects, a family hom : Ob → Ob → V of hom types, identity morphisms id,
composition ◦, left and right unit laws for ◦, and an associativity law assoc for ◦.

▶ Example 3. Let A be a type. The wild category A/U has objects
∑
X:U A → X and

morphisms X →A Y :=
∑
k:pr1(X)→pr1(Y ) k ◦pr2(X) ∼ pr2(Y ). Composition and associativity

are defined easily via path induction (and the structure identity principle for →A). The wild
category of pointed types U∗, which is isomorphic to 1/U , has a similar structure.

The following notion generalizes the univalence axiom [24, Axiom 2.10.3] and can signifi-
cantly simplify proofs. We will invoke it in the proof of Corollary 23.

▶ Definition 4. A wild category C is univalent if for all A,B : Ob(C), the canonical
function (A = B)→ (A ≃C B) is an equivalence. Here, elements of the right-hand type are
equivalences in C, defined as bi-invertible morphisms.

▶ Definition 5. Let C and D be wild categories.

1. A functor F : C → D from C to D consists of a function F0 : Ob(C) → Ob(D) and an
action on morphisms F1 : homC(X,Y )→ homD(F0(X), F0(Y )) along with a composition
law F◦ : F1(g) ◦ F1(f) = F1(g ◦ f) and an identity law Fid : idF0(X) = F1(idX).
We may refer to F0 or F1 by just F . We call F0 and F1 the 0-dimensional data of F . We
call F◦ and Fid its 1-dimensional data.

2. Let F,G : C → D be functors. A natural transformation τ : F ⇒ G from F to G consists
of functions τ0 :

∏
X:Ob(C) homD(F (X), G(X)) and τ1 :

∏
X,Y :Ob(C)

∏
f :homC(X,Y ) G(f) ◦

τ0(X) = τ0(Y ) ◦ F (f). (If D ≡ U , we may tacitly use the equivalent type G(f) ◦ τ0(X) ∼
τ0(Y )◦F (f) instead.) We say τ is a natural isomorphism if each τ0(X) is an equivalence.

▶ Definition 6 (Adjunction). Let L : C → D and R : D → C be functors of wild categories. An
adjunction L ⊣ R is a family of equivalences ψ : homD(L(A), X) ≃ homC(A,R(X)) equipped
with functions witnessing that ψ is natural in X and A, respectively:

natcod :
∏

A:Ob(C)

∏
X,Y :Ob(D)

∏
g:homD(X,Y )

∏
h:homD(L(A),X)

R(g) ◦ ψ(h) = ψ(g ◦ h)

natdom :
∏

Y :Ob(D)

∏
A,B:Ob(C)

∏
f :homC(A,B)

∏
h:homD(L(B),Y )

ψ(h) ◦ f = ψ(h ◦ L(f))

For each adjunction L ⊣ R, we also have naturality squares

homC(A,R(X)) homC(A,R(Y )) homC(B,R(Y )) homC(A,R(Y ))

homD(L(A), X) homD(L(A), Y ) homD(L(B), Y ) homD(L(A), Y )

R(g)◦−

ψ−1 ψ−1

−◦f

ψ−1 ψ−1

g◦− −◦L(f)

ñatcod(g) ñatdom(f)
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Here, the right-hand square is defined by the commuting square

ψ−1(h) ◦ L(f) ψ−1(h ◦ f)

ψ−1(ψ(ψ−1(h) ◦ L(f))) ψ−1(ψ(ψ−1(h)) ◦ f)

ñatdom(f,h)

ηψ(ψ−1(h)◦L(f))

apψ−1 (natdom(f,ψ−1(h)))

apψ−1 (ap−◦f (ϵψ(h)))

where ηψ and ϵψ come from the equivalence data of ψ. The lefthand square is defined
similarly.
▶ Remark. Our results will make no use of Fid or natcod, so we could have omitted them.
In particular,

(
ψ−1, ñatdom

)
is a natural isomorphism homC(−, R(Y ))⇒ homD(L(−), Y ) for

each Y : Ob(D). The terms natdom and ñatdom are related by the following exchange law.

▶ Lemma 7. Let (ψ, natcod, natdom) : L ⊣ R. For all f : homC(A,B) and v : homD(L(B), Y ),
we have a commuting square

ψ−1(ψ(v)) ◦ L(f) ψ−1(ψ(v) ◦ f)

v ◦ L(f) ψ−1(ψ(v ◦ L(f)))

ñatdom(f,ψ(v))

ap−◦L(f)(ηψ(v)) apψ−1 (natdom(f,v))

ηψ(v◦L(f))

exch(f,v)

Proof. Define exch(f, v) as the chain of paths

ñatdom(f, ψ(v))

ηψ(ψ−1(ψ(v)) ◦ L(f))−1 · apψ−1(natdom(f, ψ−1(ψ(v))))−1 · apψ−1(ap−◦f (ϵψ(ψ(v))))

ηψ(ψ−1(ψ(v)) ◦ L(f))−1 · apψ−1(ap−◦f (apψ(ηψ(v))) · natdom(f, v) · apψ(ap−◦L(f)(ηψ(v)))−1)−1 · apψ−1(ap−◦f (ϵψ(ψ(v))))

ap−◦L(f)(ηψ(v)) · ηψ(v ◦ L(f))−1 · apψ−1(natdom(f, v))−1 · apψ−1(ap−◦f (apψ(ηψ(v))))−1 · apψ−1(ap−◦f (ϵψ(ψ(v))))

ap−◦L(f)(ηψ(v)) · ηψ(v ◦ L(f))−1 · apψ−1(natdom(f, v))−1

by definition

via homotopy naturality of natdom(f,−)

via homotopy naturality of ηψ

via the triangle identity for ψ

◀

Limits
Since we are studying colimits, we need to discuss cocones under diagrams. In HoTT, we
have a concrete description of limits in the wild category of types that offers a useful way of
representing cocones in wild categories. To avoid an infinite tower of coherence conditions (an
unsolved problem in HoTT), we only consider diagrams over graphs, which are type-theoretic
versions of free categories [11, Section 3.2]. Let U be a universe. A graph Γ is a pair (Γ0,Γ1)
consisting of a type Γ0 : U of vertices and a family Γ1 : Γ0 → Γ0 → U of edges. Given
a wild category C, a Γ-shaped diagram F in C is a pair (F0, F1) consisting of a function
F0 : Γ0 → Ob(C) and a family of maps F1 :

∏
i,j:Γ0

∏
g:Γ1(i,j) homC(F0(i), F0(j)). We may

write F for F0 and F1. A natural transformation between two diagrams is defined similarly
to one between two functors.



P. Hart 9

Let Γ be a graph. For every U-valued diagram F over Γ, the (standard) limit of F [1,
Definition 4.2.7] is the type lim(F ) :=

∑
δ:

∏
i:Γ0

Fi

∏
i,j:Γ0

∏
g:Γ1(i,j) Fi,j,g(δi) = δj . The limit

is functorial in F . The action on maps sends τ : F ⇒ G to the function lim(τ) : lim(F )→
lim(G) defined by (δ,D) 7→

(
λi.τ0(i, δi), λiλjλg.τ1(i, j, g, δi) · apτ0(j)(Di,j,g)

)
. Let C be a

wild category. For every C-valued diagram F over Γ and every C : Ob(C), we have the
diagram homC(Fj , C) −◦Fi,j,g−−−−−→ homC(Fi, C) over Γop, the opposite graph of Γ, similar to the
opposite category. We define the type of cocones under F on C as limi:Γop(homC(Fi, C)).

▶ Lemma 8. Let Γ be a graph and let F and G be Γ-shaped diagrams in U . If τ : F ⇒ G is
a natural isomorphism, then lim(τ) : lim(F )→ lim(G) is an equivalence.

Next, we state the structure identity principle (SIP) for lim. The SIP is a general
lemma [20, Theorem 11.6.2] characterizing identity types of Σ-types. We will need the SIP
for limits in order to port the proof of LAPC.

▶ Lemma 9. Let F be a Γ-shaped diagram in U . Let e1 := (δ1, D1), e2 := (δ2, D2) : lim(F ).
Then e1 = e2 is equivalent to the type of Q : δ1 ∼ δ2 equipped with commuting squares

Fi,j,g(δ1(i)) δ1(j)

Fi,j,g(δ2(i)) δ2(j)

D1(i,j,g)

apFi,j,g (Qi) Qj

D2(i,j,g)

5 Porting the proof of LAPC

This section is the core of the paper. We find a sufficient, practically useful condition for the
standard proof of LAPC to work for wild categories. Informally, the condition states that
natdom interacts nicely with the composition law of the left adjoint.

Let C be a wild category. Let Γ be a graph and F : Γ → C be a C-valued diagram
over Γ. Consider a cocone K := (C, r,K) under F , where ri : Fi → C for each i : Γ0 and
Ki,j,g : rj ◦ Fi,j,g = ri for all i, j : Γ0 and g : Γ1(i, j).

▶ Definition 10 ([12, is-colim]). We say that K is colimiting if for every X : Ob(C), the
following post-composition map is an equivalence:

postcompK(X) : homC(C,X)→ limi:Γop(homC(Fi, X))
postcompK(X, f) :=

(
λi.f ◦ ri, λjλiλg. assoc(f, rj , Fi,j,g) · apf◦−(Ki,j,g)

)
Definition 10 expresses that for every cocone K′ under F , there is a unique cocone morphism
K → K′. Let D be a wild category and L : C → D be a functor. We have an induced diagram
L(F ) and an induced cocone L(K) under L(F ):

L(Fi) L(Fj)

L(C)

L(Fi,j,g)

L(ri) L(rj)
L(Ki,j,g) (L(Ki,j,g) := L◦(rj , Fi,j,g) · apL(Ki,j,g))

Suppose that K is colimiting and that we have an adjunction (ψ, natcod, natdom) : L ⊣ R.
We wish to replay the standard classical proof by showing the chain of isomorphisms (iso)

https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/core/lib/wild-cats/Colim-wc.agda#L21
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equals the post-composition map. Let us preview this argument. Let ζ denote the composite
of the isomorphisms. By function extensionality, it suffices to show ζ and post-composition
are equal on h for every h : homD(L(C), Y ). For each i : Γ0, we can build an equality
Qi : ψ−1(ψ(h) ◦ ri) = h ◦ L(ri) from natdom and the equivalence data for ψ. By the SIP for
lim (Lemma 9), it suffices to prove the following equality for all i, j : Γ0 and g : Γ1(i, j):

pr2(ζ(h))(j, i, g) ·Qi = ap−◦L(Fi,j,g)(Qj) · assoc(h, L(rj), L(Fi,j,g)) · aph◦−(L(Ki,j,g))

The problem is that this equality need not hold for wild categories, and we offer an example
of an adjunction for which it’s provably false inside HoTT (Example 14). Still, by reverse
engineering the equality, we arrive at the following general property of an adjunction as a
sufficient condition for it to hold.

▶ Definition 11 ([12, ladj-is-2coher]). The left adjoint L is 2-coherent if for all h1 :
homD(L(X), Y ), h2 : homC(Z,X), and h3 : homC(W,Z), the following diagram commutes:

(ψ(h1) ◦ h2) ◦ h3 ψ(h1) ◦ (h2 ◦ h3)

ψ(h1 ◦ L(h2)) ◦ h3 ψ(h1 ◦ L(h2 ◦ h3))

ψ((h1 ◦ L(h2)) ◦ L(h3)) ψ(h1 ◦ (L(h2) ◦ L(h3)))

assoc(ψ(h1),h2,h3)

natdom(h2◦h3,h1)ap−◦h3 (natdom(h2,h1))

apψ(aph1◦−(L◦(h2,h3)))natdom(h3,h1◦L(h2))

apψ(assoc(h1,L(h2),L(h3)))

(2-coh)

▶ Note 12. In terms of a classical biadjunction [9, Definition 9.8], Definition 11 is part of the
pseudonaturality of (ψ, natdom) : homD(L(−), X)⇒ homC(−, R(X)).

Intuitvely, Definition 11 accounts for the 1-dimensional datum introduced by L(Ki,j,g).
This is necessary as the definition of adjunction only accounts for 0-dimensional data. By
accounting for the relevant 1-dimensional data, we can fininsh porting the standard proof to
wild category theory as follows.

▶ Theorem 13 ([12, Ladj-colim]). Suppose that L is 2-coherent. The cocone L(K) under
L(F ) is colimiting.

Proof. For all X : Ob(D), we have that

homD(L(C), X)
≃ homC(C,R(X)) (hom-isomorphism)
≃ limi:Γop(homC(Fi, R(X))) (K is colimiting)
≃ limi:Γop(homD(L(Fi), X)) (Lemma 8 applied to

(
ψ−1, ñatdom

)
◦ F )

Let ζ denote the composite of these three equivalences: ζ sends h : homD(L(C), X) to(
λi.ψ−1(ψ(h) ◦ ri), λjλiλg.ñatdom(Fi,j,g, ψ(h) ◦ rj) · apψ−1(assoc(ψ(h), rj , Fi,j,g) · apψ(h)◦−(Ki,j,g))

)
We want to show ζ(h) = postcompL(K)(X,h). For each i : Γ0, we have the chain Qi of paths

ψ−1(ψ(h) ◦ ri) ψ−1(ψ(h ◦ L(ri)) h ◦ L(ri)
apψ−1 (natdom(ri,h)) ηψ(h◦L(ri))

https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/core/lib/wild-cats/Ladj-2-coher.agda#L16
https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/core/lib/wild-cats/Ladj-colim.agda
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By Lemma 9, it suffices to prove that

ñatdom(Fi,j,g, ψ(h) ◦ rj) · apψ−1(assoc(ψ(h), rj , Fi,j,g) · apψ(h)◦−(Ki,j,g)) ·Qi

ap−◦L(Fi,j,g)(Qj) · assoc(h, L(rj), L(Fi,j,g)) · aph◦−(L(Ki,j,g))
(eq-edge)

We start with the top endpoint of (eq-edge). By Lemma 7, we have the commuting diagram

ψ−1(ψ(h) ◦ rj) ◦ L(Fi,j,g) ψ−1((ψ(h) ◦ rj) ◦ Fi,j,g)

ψ−1(ψ(h ◦ L(rj))) ◦ L(Fi,j,g) • ψ−1(ψ(h ◦ L(rj)) ◦ Fi,j,g)

(h ◦ L(rj)) ◦ L(Fi,j,g) ψ−1(ψ((h ◦ L(rj)) ◦ L(Fi,j,g)))

ñatdom(Fi,j,g,ψ(h)◦rj)

apψ−1(−)◦L(Fi,j,g)(natdom(rj ,h)) apψ−1(−◦Fi,j,g)(natdom(rj ,h))

ñatdom(Fi,j,g,ψ(h◦L(rj)))
ap−◦L(Fi,j,g)(ηψ(h◦L(rj))) apψ−1 (natdom(Fi,j,g,h◦L(rj)))

ηψ((h◦L(rj))◦L(Fi,j,g))−1

homotopy naturality

exch(Fi,j,g,h◦L(rj))

We also have the commuting diagram

ψ−1(ψ(h) ◦ (rj ◦ Fi,j,g)) ψ−1(ψ(h) ◦ ri)

ψ−1(ψ(h ◦ L(rj ◦ Fi,j,g))) ψ−1(ψ(h ◦ L(ri)))

h ◦ L(rj ◦ Fi,j,g) h ◦ L(ri)

apψ−1 (apψ(h)◦−(Ki,j,g))

apψ−1 (natdom(rj◦Fi,j,g,h)) apψ−1 (natdom(ri,h))

apψ−1 (apψ(aph◦L(−)(Ki,j,g)))

ηψ(h◦L(rj◦Fi,j,g)) ηψ(h◦L(ri))

aph◦−(apL(Ki,j,g))

homotopy naturality

homotopy naturality

By rewriting (eq-edge) with these two commuting diagrams, we turn it into the equality
expressing that the following diagram commutes:

ψ−1((ψ(h) ◦ rj) ◦ Fi,j,g) ψ−1(ψ(h) ◦ (rj ◦ Fi,j,g))

ψ−1(ψ(h ◦ L(rj)) ◦ Fi,j,g) ψ−1(ψ(h ◦ L(rj ◦ Fi,j,g)))

ψ−1(ψ((h ◦ L(rj)) ◦ L(Fi,j,g))) h ◦ L(rj ◦ Fi,j,g)

(h ◦ L(rj)) ◦ L(Fi,j,g) h ◦ (L(rj) ◦ L(Fi,j,g))

apψ−1 (assoc(ψ(h),rj ,Fi,j,g))

apψ−1 (natdom(rj◦Fi,j,g,h))apψ−1(−◦Fi,j,g)(natdom(rj ,h))

ηψ(h◦L(rj◦Fi,j,g))apψ−1 (natdom(Fi,j,g,h◦L(rj)))

ηψ((h◦L(rj))◦L(Fi,j,g)) aph◦−(L◦(rj ,Fi,j,g))

assoc(h,L(rj),L(Fi,j,g))

(†)

At this point, we could have defined (2-coh) so that it aligns with (†), but this equality is
difficult to check in practice. Hence we now transform (†) into something more tractable.
Since ψ is an equivalence (hence an embedding), the equality (†) is equivalent to its image
under apψ. By homotopy naturality of ηψ, this image is equivalent to an equality expressing
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that the following diagram commutes:

(ψ(h) ◦ rj) ◦ Fi,j,g ψ(h) ◦ (rj ◦ Fi,j,g)

ψ(h ◦ L(rj)) ◦ Fi,j,g ψ(h ◦ L(rj ◦ Fi,j,g))

ψ((h ◦ L(rj)) ◦ L(Fi,j,g)) ψ(h ◦ (L(rj) ◦ L(Fi,j,g)))

assoc(ψ(h),rj ,Fi,j,g)

natdom(rj◦Fi,j,g,h)ap−◦Fi,j,g
(natdom(rj ,h))

apψ(aph◦−(L◦(rj ,Fi,j,g)))natdom(Fi,j,g,h◦L(rj))

apψ(assoc(h,L(rj),L(Fi,j,g)))

Finally, this diagram commutes because L is 2-coherent. ◀

▶ Example 14. As claimed, without the 2-coherence assumption, (eq-edge) may not hold.
Define the wild category E by Ob(E) := 1 and homE(∗, ∗) := S1. Here, S1 denotes the

circle, defined as the HIT generated by a point base : S1 and a path loop : base = base.
The remaining structure on E , including its composition operation •, comes from path
concatenation on a loop space. Indeed, S1 is the loop space of the Eilenberg-MacLane space
K(Z, 2) [14]. For all ℓ : homE(∗, ∗), we have a nontrivial loop loopℓ at ℓ: It is known that
loop is nontrivial [24, Lemma 6.4.1], and we have an equivalence f :

(
S1, base

)
→

(
S1, ℓ

)
of pointed types because S1 is a loop space. (As we’ll see in Section 6, loop spaces are
independent of basepoint in this sense, i.e., homogeneous.)

Let the functor Λ : E → E be the identity on objects and morphisms, but let Λ◦(ℓ1, ℓ2) :=
loopℓ1•ℓ2 . Consider the evident adjunction Λ ⊣ Λ. If h ≡ id∗, then (eq-edge), with respect to
this adjunction, reduces to showing Λ◦(h2, h3) is trivial. But it’s nontrivial by construction.

6 Suspension is 2-coherent

This section (along with Section 7) offers evidence that Definition 11 is useful in practice.
We show that the suspension endofunctor Σ : U∗ → U∗ on the wild category of pointed
types is a 2-coherent left adjoint to the loop space endofunctor Ω (which maps (X,x0) to
(x0 = x0, reflx0)). By Theorem 13, we deduce that Σ preserves (graph-indexed) colimits.
Although the diagram (2-coh) is a valuable approach to proving this preservation property, it
does rely on a new trick based on homogeneous types to handle the path algebra generated by
Σ. The adjunction Σ ⊣ Ω is already known [8, Lemma 2.16], so our contribution is verifying
that Σ is 2-coherent. Also, to our knowledge, ours is the first proof in HoTT (in particular,
Book HoTT) that Σ preserves colimits.

If X is a pointed type, then ty(X) and pt(X) denote the underlying type and basepoint
of X, respectively. If f : X →∗ Y is a pointed map, then fun(f) and bp(f) denote the
underlying function and proof of basepoint preservation of f , respectively.

▶ Definition 15. Let f1, f2 : X1 →∗ X2 be pointed maps. A pointed homotopy f1 ∼∗ f2 is a
homotopy H : fun(f1) ∼ fun(f2) with a path H(pt(X1)) · bp(f2) = bp(f1).

The SIP for pointed maps says that the canonical function f1 = f2 → f1 ∼∗ f2 is an
equivalence, with inverse denoted by ⟨−,−⟩. We use this equivalence to define the terms Σ◦
and natdom, which will help us manipulate them in the proof of 2-coherence.

The composition law’s first component is defined by induction (see Section 3.2), with tN
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and tS trivial and T defined, for suitable pointed maps r and s, via the commuting square

apΣ(s◦r)(glue(x)) apΣ(s)◦Σ(r)(glue(x))

glue(fun(s)(fun(r)(x))) apΣ(s)(glue(fun(r)(x)))

ρΣ(s◦r)(x) via ρΣ(r)(x)

via ρΣ(s)(fun(r)(x))

Its second component is trivial. Next, the adjunction Σ ⊣ Ω [12, SuspAdjointLoop] is defined
component-wise by

Φ : homU∗(Σ(X,x0), (Y, y0)) ≃−→ homU∗((X,x0),Ω(Y, y0))
Φ(h, h0) := (λx. h−1

0 · aph(glue(x) · glue(x0)−1) · h0︸ ︷︷ ︸
ξ(x,h,h0)

, ζ(glue(x0), h0))

where the underbrace denotes term abbreviation and ζ(glue(x0), h0) denotes the evident
path of type ξ(x0, h, h0) = refly0 . For all f∗ := (f, f0) : (Z, z0)→∗ (X,x0) and h∗ := (h, h0) :
Σ(X,x0)→∗ (Y, y0), natdom(f∗, h∗) is defined as the path

Φ(h∗) ◦ f∗

≡
(
λx.ξ(f(x), h∗), apξ(−,h∗)(f0) · ζ(glue(x0), h0)

)
= (λx.ξ(x, h ◦ fun(Σ(f∗)), h0), ζ(glue(z0), h0)) (⟨Θ,Θ0⟩)
≡ Φ(h ◦ fun(Σ(f∗)), h0)
≡ Φ(h∗ ◦ Σ(f∗))

Here, for each z : Z, Θ(z) is defined as the path

h−1
0 · aph(glue(f(z)) · glue(f(z0))−1) · h0

h−1
0 · aph◦fun(Σ(f∗))(glue(z) · glue(z0)−1) · h0

via ρΣ(f∗)(z) and ρΣ(f∗)(z0)

and Θ0 is defined by path induction on ρΣ(f∗)(z0).
Now that we’ve defined Σ◦ and natdom, we claim that the diagram (2-coh) commutes.

The SIP for pointed homotopies turns this goal into a double pointed homotopy:

▶ Definition 16. Let f1 and f2 be pointed maps and let (H1, κ1), (H2, κ2) : f1 ∼∗ f2. A
double pointed homotopy (H1, κ1) ∼2

∗ (H2, κ2) consists of a homotopy µ : H1 ∼ H2 and a
commuting triangle

H2(pt(X1)) · bp(f2)

H1(pt(X1)) · bp(f2) bp(f1)

ap−·bp(f2)(µ(pt(X1))) κ2

κ1

To construct the first component of the desired double pointed homotopy, we have to
reduce a large expression involving various ρ terms (coming from the natdom and Σ◦ edges of
(2-coh)). We do so via a mechanical, though nontrivial, process of iteratively eliminating
matching ρ terms. The commuting triangle, however, is infeasible to construct directly. The
problem is that it contains the entire first component, which involves complex path algebra
and does not reduce at pt(W ). In addition, it contains a handful of nontrivial path inductions
from Θ’s second component. The result is a term that is simply too big.

https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/theorems/homotopy/SuspAdjointLoop.agda
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Luckily, we can get the commuting triangle for free by noticing the special nature of
loop spaces. Every loop space is a homogeneous type, i.e., a pointed type (X,x0) equipped
with a pointed equivalence autox : (X,x0) ≃−→∗ (X,x) for every x : X. In this case,
we also say X is homogeneous at x0. We note a few things about such types. First,
if M is homogeneous, then it’s homogeneous at all its elements. Second, by applying
− ◦ auto−1

pt(M) to auto, we can make every homogeneous type M strongly homogeneous, i.e.,
autopt(M) = idM . Finally, as Ω preserves pointed equivalences, if (X,x0) is homogeneous, we
have homog-pth(x0, x) : (x0 = x0) ≃−→ (x = x) for every x : X. Now, a key insight for our
goal is Cavallo’s trick: two pointed maps into homogoneous types are pointed-homotopic
when their underlying functions are homotopic [23, →·Homogeneous≡]. As our goal is a
higher pointed homotopy, we want the following higher version of the trick, which will finish
the proof that Σ is 2-coherent [12, Susp-2coher]:

▶ Lemma 17 ([12, ∼⊙homog∼]). Let f1, f2 : X1 →∗ X2 with X2 homogeneous. Let
(H1, κ1), (H2, κ2) : f1 ∼∗ f2. If H1 ∼ H2, then (H1, κ1) ∼2

∗ (H2, κ2).

Proof. We begin with a general observation. Let k : X1 →∗ X2 and consider the evaluation
map evpt(X1),fun(k) : (fun(k) ∼ fun(k), refl)→∗ Ω(X2, fun(k)(pt(X1))). As X2 is homogeneous
at fun(f1)(pt(X1)), this map has a pointed section σ∗ whose underlying function sends a
loop p at fun(k)(pt(X1)) to the homotopy σ(p, x) := homog-pth(fun(k)(pt(X1)), fun(k)(x), p).
It’s easy to check that σ is pointed. It remains to construct a pointed homotopy γ :
evpt(X1),fun(k) ◦σ∗ ∼∗ id. The first component of γ is a homotopy homog-pth(pt(X1), pt(X1)) ∼
idfun(k)(pt(X1))=fun(k)(pt(X1)), which we get by promoting X2 to a strongly homogeneous type.
The second component, which also uses the fact X2 is strongly homogeneous, follows routinely.

Let Q : H1 ∼ H2. By strong function extensionality, we “path induct” on H1 and Q so
that they are both identity homotopies. Further, by generalizing pt(X2), we induct on bp(f1)
to make it reflw0 with w0 := fun(f1)(pt(X1)). By our general observation, evpt(X1),fun(f1) has
a pointed section σ∗, so that Ω(σ∗) is a pointed section of Ω(evpt(X1),fun(f1)). We want a
pair (µ, µ0) : (refl, κ1) ∼2

∗ (refl, κ2). We define µ : refl ∼ refl as the image fun(Ω(σ∗))(κ) of a
certain loop κ at reflw0 under Ω(σ∗). To make the right choice for κ, we look ahead to the
commuting triangle µ0:

bp(f1)

bp(f1) reflw0

ap−·bp(f1)(µ(pt(X1))) κ2

κ1

Since Ω(σ∗) is a pointed section of Ω(evpt(X1),fun(f1)), µ(pt(X1)) will equal κ. Finally, −·bp(f1)
is an equivalence, so we simply solve for κ. ◀

▶ Theorem 18 ([12, Susp-colim]). The suspension Σ : U∗ → U∗ preserves colimits.

Recall that a type is acyclic if its suspension is contractible [3]. We contribute a new closure
property of acyclic types with the next corollary. It uses Hart and Favonia’s construction of
colimits colim∗ in U∗ as the cofiber of a map between colimits colim in U [11, Theorem 15].
(Colimits in U are postulated as HITs definable from pushouts.)

▶ Corollary 19. The class of pointed acyclic types is closed under colimits in U∗.

Proof. By Theorem 18 and uniqueness of colimits in U∗ (as in any wild bicategory), we
have an equivalence of pointed types Σ(colim∗(F )) ≃∗ colim∗(Σ(F )). If ty(Fi) is acyclic for
each i : Γ0, then ty(colim∗(Σ(F ))) is contractible as the cofiber of an equivalence, namely

https://github.com/agda/cubical/blob/master/Cubical/Foundations/Pointed/Homogeneous.agda#L42
https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/theorems/homotopy/Susp-2coher.agda
https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/core/lib/types/Homogeneous.agda#L137
https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/theorems/homotopy/Susp-colim.agda
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the function colim(1)→ colim(ty ◦Σ(F )) induced by the unique natural transformation into
ty ◦Σ(F ). This completes the proof since equivalences preserve contractibility. ◀

▶ Note 20. Theorem 18 also puts on firm footing a key step of Graham’s construction of
stable homotopy as a homology theory: proving that Σ preserves cofibers [10, Corollary 2.2].
Graham presents an ad-hoc pen-and-paper proof that omits some complex equality proofs.
By contrast, we offer a fully mechanized proof based on a general property of left adjoints.

7 Colimits of modal types

We end with another application of Theorem 13 in synthetic homotopy theory. We prove that
all modalities on coslices of a universe U are 2-coherent and thereby construct (graph-indexed)
colimits of modal types. Consider functions # : U → U and η :

∏
X:U X → #X. A type

X : U is modal if ηX is an equivalence. Let U# denote the subuniverse of modal types.

▶ Definition 21 ([12, Modality]). We say that # is a modality if
for all X : U , #X is modal;
for all X : U and x, y : #X, the identity type x = y is modal;
for all X : U and P : #X → U#, the function −◦ηX :

(∏
x:#X P (x)

)
→ (

∏
x:X P (ηX(x)))

has a section. (This condition is called #-induction.)

Suppose # is a modality and let A be a type. By #-induction (including the asso-
ciated nondependent recursion principle), we have a functor #A : A/U → (A/U)# into
the full wild subcategory of A/U on those (X, s) with X modal, called modal A-types. It
is a straightforward extension of the functor # : U → U#: for example, its object func-
tion sends (X, s) to (#X, ηX ◦ s). By #-induction, we also have a family of equivalences(
#AU →A V

) ≃−→ (U →A V ) for A-types U and modal A-types V that is natural in U .
(It’s trivially natural in V .) Hence we have an adjunction between #A and the forgetful
functor [12, Mod-cos-adj].

▶ Theorem 22 ([12, Mod-cos-adj-2coh]). The left adjoint #A is 2-coherent.

Proof. By #-induction followed by a burst of path induction. ◀

▶ Corollary 23 ([12, Mod-colim]). The wild category (A/U)# has all colimits.

Proof. Let F be a Γ-shaped diagram in (A/U)#. By [11, Theorem 15], the diagram F#,A(F )
has a colimit colimA(F ) in A/U . Since #A preserves colimits (Theorem 22), we have the
following colimiting cocone and natural isomorphism in (A/U)#:

#A(F(Fi)) #A(F(Fi)) Fi Fj

#A(colimA(F )) #A(F(Fi)) #A(F(Fj))

#A(F(Fi,j,g)) Fi,j,g

≃ ηA ≃ηA

#A(F(Fi,j,g))

where ηA(Z) :=
(
ηty(Z), refl

)
: Z →A #A(Z) for all Z : A/U . In univalent wild bicategories,

composing with natural isomorphisms preserves colimiting cocones. Indeed, univalence lets
us reduce the natural isomorphism F ⇒ #A ◦ F to the identity, and a standard property of
bicategories implies that composing with the identity preserves colimiting cocones. Finally,
we note (A/U)# is a wild bicategory and, assuming the univalence axiom, a univalent one. ◀

https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/core/lib/types/Modality.agda#L10
https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/theorems/modality/Mod-Cos-adj.agda#L34
https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/theorems/modality/Mod-Cos-adj.agda#L52
https://github.com/PHart3/colimits-agda/blob/lapc/HoTT-Agda/theorems/modality/Mod-colim.agda


16 On Left Adjoints Preserving Colimits in HoTT

Our construction of colimits of modal types is simpler than the Book proof (see Sec-
tion 1.2.3) and illuminates a higher coherence used by the latter. Equality (7.4.11) of the
Book proof secretly requires a coherence condition between ∥−∥n’s composition law and its
naturality data natn, which is satisfied because ∥g ◦ f∥n ◦ |−|n ≡ |−|n ◦ g ◦ f . The required
coherence has a similar flavor to Definition 11, but our proof makes such a condition explicit
as part of a general framework.

8 Conclusion and future work

We addressed a coherence problem in the proof that a left adjoint between wild categories
preserves colimits. We proved that the coherence, which always holds in the classical
setting, may be false for wild categories. With just “off-the-shelf” tools from HoTT, we
identified a relatively tractable sufficient condition on the left adjoint for the proof to work,
namely 2-coherence. We showed that the suspension functor is 2-coherent and thus preserves
colimits. In doing so, we managed to avoid an infeasible equality proof by developing a
higher-dimensional version of Cavallo’s trick for homogeneous types. Finally, we showed
that modalities on coslices of a universe are 2-coherent and, as a result, that the associated
subcategories of modal types are cocomplete.

There are a few open questions raised by our work. The simplest is the analysis of the
dual statement that right adjoints preserve limits for wild categories, which should be similar
to the one presented here. Another question is whether we can extend Theorem 22 to all
reflective subuniverses. Finally, it would be quite useful to find a trick to show, in Book
HoTT, that the smash product •∧− : U∗ → U∗ is 2-coherent. The right adjoint of the smash
product is the pointed map space functor, which is not generally valued in homogeneous
types. Hence we cannot use Lemma 17 to escape the infeasible equality proof, which is likely
even harder than the one for the suspension.
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