Coslice Colimits in Homotopy Type Theory

Perry Hart and Favonia

University of Minnesota, Twin Cities

CSL 2025

1/23

Goals

- 1. Construct coslice colimits in a way that reveals their relation to colimits in a type universe \mathcal{U} .
- 2. Use the construction to prove elegant categorical results about colimits (*not in this talk*).
- 3. Use the construction to prove useful results about other areas of synthetic homotopy theory:
 - factorization systems
 - higher group theory
 - cohomology theory (not in this talk)

- **Homotopy theory** deals with topological spaces and maps up to continuous deformation.
- Homotopy type theory (HoTT) is a formal system
 - for reasoning synthetically about homotopy theory, i.e., for synthetic homotopy theory
 - equipped with semi-decidable proof-checking, with implementations in Agda and Coq.

Our work:

Use HoTT to build verified proofs of theorems in homotopy theory.

Focus of our work: coslices

Let C be a category and A an object.

The coslice A/C of C under A has objects and morphisms

Coslices of the category of spaces appear often in homotopy theory. In particular, the category of pointed spaces, i.e., the coslice under the one-point space. In HoTT, a type universe \mathcal{U} forms a *(wild) category*.

Coslices of $\ensuremath{\mathcal{U}}$ have natural roles in synthetic homotopy theory.

So do their *colimits*.

Fundamental constructions from category theory, letting us build complex spaces from simpler ones.

This work:

theory of coslice colimits inside HoTT,¹ i.e., colimits in A/U

 $^{^1 \}text{Due}$ to open questions about the definability of general $\infty\text{-categories}$ in HoTT, all colimits are over free categories in this work.

HoTT extends Martin-Löf type theory (MLTT) with

- the univalence axiom and/or
- higher inductive types (HITs), e.g., the colimit type.
 Generalize inductive types by allowing constructors of ld types.

Our coslice colimit construction is done in a small variant of HoTT:

 $\mathsf{MLTT} + \mathsf{Colimit}$

Technical note: Pushouts are enough to define all colimits as HITs.

Colimit type

A (directed) graph is a pair $\Gamma := (\Gamma_0, \Gamma_1)$ consisting of

- a type $\Gamma_0 : \mathcal{U}$ of vertices
- a family $\Gamma_1: \Gamma_0 \to \Gamma_0 \to \mathcal{U}$ of edges.

Let F be a Γ -shaped diagram in \mathcal{U} .

$$F(v_0) \xrightarrow{F(e_2)} F(v_1)$$

$$F(e_0) \downarrow \downarrow F(e_1) \xrightarrow{F(e_3)} F(v_2)$$

$$F(v_3) F(v_2)$$

◆□▶ ◆□▶ ◆目▶ ▲目▶ ▲□▶ ◆□▶

The **colimit of** F is the HIT colim_{Γ}(F) generated by

$$\iota : (i:\Gamma_0) \to F_i \to \operatorname{colim}_{\Gamma}(F)$$

$$\kappa : (i,j:\Gamma_0) (g:\Gamma_1(i,j)) \to \iota_j \circ F_{i,j,g} \sim \iota_i$$

This data forms a *cocone on* $\operatorname{colim}_{\Gamma}(F)$ *under F*.

Coslices and coslice colimits

Let $A : \mathcal{U}$. We have a **coslice category** A/\mathcal{U} defined by

$$\begin{array}{lll} \mathsf{Ob}(\mathcal{A}/\mathcal{U}) &\coloneqq& \sum_{X:\mathcal{U}} \mathcal{A} \to X \\ \underbrace{\mathsf{hom}_{\mathcal{A}/\mathcal{U}}(Y_1,Y_2)}_{Y_1 \to_{\mathcal{A}}Y_2} &\coloneqq& \sum_{f:\mathsf{pr}_1(Y_1) \to \mathsf{pr}_1(Y_2)} f \circ \mathsf{pr}_2(Y_1) \sim \mathsf{pr}_2(Y_2) \end{array}$$

Coslices and coslice colimits

Let A : U. We have a **coslice category** A/U defined by

$$Ob(A/\mathcal{U}) := \sum_{X:\mathcal{U}} A \to X$$
$$\underbrace{\mathsf{hom}_{A/\mathcal{U}}(Y_1, Y_2)}_{Y_1 \to _A Y_2} := \sum_{f:\mathsf{pr}_1(Y_1) \to \mathsf{pr}_1(Y_2)} f \circ \mathsf{pr}_2(Y_1) \sim \mathsf{pr}_2(Y_2)$$

Let Γ be a graph and F be a Γ -shaped diagram in A/U.

An *F*-cocone *K* on an object *Y* of A/U is a *colimit of F* if for each *X* : Ob(A/U), the evident function

$$postcomp(K, X) : (Y \rightarrow_A X) \rightarrow Cocone_F(X)$$

is an equivalence of types.

What does an *F*-cocone (h, H) look like in A/U?

The commuting triangle $H_{i,j,g}$: $h_j \circ F_{i,j,g} \sim_A h_i$ consists of

a homotopy (pointwise equality)

$$\eta_{i,j,g}$$
: $\operatorname{pr}_1(h_j) \circ \operatorname{pr}_1(F_{i,j,g}) \sim \operatorname{pr}_1(h_i)$

of the underlying functions

• for each a : A, a 2-cell (equality between equalities) involving $\eta_{i,j,g}(pr_2(F_i)(a))$ and the data of F and h.

Distinguishes the colimit of *F*, in A/U, from $\operatorname{colim}_{\Gamma}(\mathcal{S}(F))$ $\mathcal{S} : A/U \to A$ is the *forgetful* functor. **Question:** How should we construct the colimit of *F* in A/U?

1. Directly define it as a 2-dimensional HIT.

Sure, but unhelpful.

Apply the forgetful functor S : A/U → U to F and then form the colimit in U of S(F) augmented by pr₁(A) → ●.

This well-known construction won't work.

Form the colimit colim_Γ(S(F)) and then attach 2-cells to it.
 Works nicely. We take this approach.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

11/23

Correct approach

1. Form the pushout square

2. Form an *F*-cocone structure $\mathcal{K}(\mathcal{P}_F)$ on (\mathcal{P}_F, inl)

via the cocone data on $\operatorname{colim}_{\Gamma}(\mathcal{S}(F))$ and the computation rules for colimit induction.

Theorem (Agda formalized) The function

 $\mathsf{postcomp}(\mathcal{K}(\mathcal{P}_F), T) \; : \; ((\mathcal{P}_F, \mathsf{inl}) \to_A T) \; \to \; \mathsf{Cocone}_F(T)$

is an equivalence for every T : Ob(A/U).

Proof.

By direct construction of a two-sided inverse.

So far, we have defined a function

$$\operatorname{colim}_{\Gamma}^{\mathcal{A}} \coloneqq \mathcal{P} : \operatorname{Ob}(\operatorname{Diag}(\Gamma, \mathcal{A}/\mathcal{U})) \to \operatorname{Ob}(\mathcal{A}/\mathcal{U})$$

Next, make \mathcal{P} a functor by defining its action on maps of diagrams.

Goal: Describe this action in terms of the action of the \mathcal{U} -valued colimit functor.

Let F and G be Γ -shaped diagrams in A/U.

Let $\delta: F \Rightarrow_A G$ be a morphism of diagrams.

1. Colimit induction yields map of spans

 $\bar{\delta} \ \coloneqq \ \operatorname{action}$ of $\mathcal U\text{-valued colimit on } \delta$

2. Universal property of pushouts yields map in A/U

 $\operatorname{colim}_{\Gamma}^{A}(\delta)$: $\mathcal{P}_{F} \to_{A} \mathcal{P}_{G}$

Make sure that this action is correct: Prove that

 $\mathsf{colim}_\Gamma^A\dashv\mathsf{const}_\Gamma$

Amounts to two naturality squares.

Hard square:

Lemma (Agda formalized) For every T : Ob(A/U) and $\delta : F \Rightarrow_A G$, the following commutes:

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ < つ < ○ </p>

Interaction with (orthogonal) factorization systems

Let $(\mathcal{L}, \mathcal{R})$ be an OFS on \mathcal{U} .

(Every map in ${\cal U}$ can be uniquely factored as a function in ${\cal L}$ followed by one in ${\cal R}.)$

Consider diagrams F, G: Diag (Γ, U) .

Define the predicates on natural transformations $F \Rightarrow G$

$$\widehat{\mathcal{L}}(H,\gamma) := (i:\Gamma_0) \to \mathcal{L}(H_i) \widehat{\mathcal{R}}(H,\gamma) := (i:\Gamma_0) \to \mathcal{R}(H_i)$$

Lemma The pair $(\widehat{\mathcal{L}}, \widehat{\mathcal{R}})$ forms an OFS on Diag (Γ, \mathcal{U}) .

Corollary The colimit functor $\operatorname{colim}_{\Gamma}$ takes $\widehat{\mathcal{L}}$ to \mathcal{L} . For all X, Y : Ob(A/U), define the predicate

 $\mathcal{L}_A(f,p) \coloneqq \mathcal{L}(f)$

on $X \to_A Y$. Define $\widehat{\mathcal{L}}_A$ levelwise as before.

The functor colim^{*A*}_{Γ} **takes** $\hat{\mathcal{L}}_A$ **to** \mathcal{L}_A .

Indeed, consider a map $\delta : F \Rightarrow_A G$ of A/U-valued diagrams.

1. The underlying function of $\operatorname{colim}_{\Gamma}^{A}(\delta)$ is induced by

$$\begin{array}{ccc} A & \longleftarrow & \operatorname{colim}_{\Gamma} A \longrightarrow \operatorname{colim}_{\Gamma}(\mathcal{S}(F)) \\ & \downarrow^{\operatorname{id}} & & \downarrow^{\overline{\delta}} \\ A & \longleftarrow & \operatorname{colim}_{\Gamma} A \longrightarrow \operatorname{colim}_{\Gamma}(\mathcal{S}(G)) \end{array}$$

If δ is in L
_A, all three vertical functions are in L.
 Since a map of spans is a map of diagrams, colim^A_Γ(δ) is in L_A.

A type $X : \mathcal{U}$ is $(\mathcal{L}, \mathcal{R})$ -connected if $X \to \mathbf{1}$ is in \mathcal{L} .

Let *F* be a Γ -shaped diagram of pointed $(\mathcal{L}, \mathcal{R})$ -connected types.

A type $X : \mathcal{U}$ is $(\mathcal{L}, \mathcal{R})$ -connected if $X \to \mathbf{1}$ is in \mathcal{L} .

Let F be a Γ -shaped diagram of pointed (\mathcal{L}, \mathcal{R})-connected types.

The type colim $_{\Gamma}^{1}(1)$ is trivial:

Consequence: The type $\operatorname{colim}^{1}_{\Gamma}(F)$ is also $(\mathcal{L}, \mathcal{R})$ -connected.

Explicit colimit construction for higher groups (*n*-connected, *n*-truncated) OFS \Rightarrow Categories of *higher groups*

$$\mathcal{U}^*_{\geq k, \leq n+k} := (k-1)$$
-connected,
(n+k)-truncated
pointed types

inherit colimits from \mathcal{U}^* .

Pushout of coproducts

By the 3 \times 3 *lemma*, transform our pushout construction \mathcal{P}_F to a **new construction**:

Assume: A is $(\mathcal{L}, \mathcal{R})$ -connected.

Note: Pushouts and coproducts preserve $(\mathcal{L}, \mathcal{R})$ -connectedness.

Pushout of coproducts

By the 3 \times 3 *lemma*, transform our pushout construction \mathcal{P}_F to a **new construction**:

Assume: A is $(\mathcal{L}, \mathcal{R})$ -connected.

Note: Pushouts and coproducts preserve $(\mathcal{L}, \mathcal{R})$ -connectedness.

Consequence of new construction and note:

Full subcategory of A/U on $(\mathcal{L}, \mathcal{R})$ -connected types has colimits.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

More colimit constructions for higher groups

Lemma

Let $G : \mathcal{U}_{\geq k, \leq n+k}^*$. The coslice $G/\mathcal{U}_{\geq k, \leq n+k}^*$ is a reflective subcategory (in a coherent sense) of $pr_1(G)/\mathcal{U}_{\geq k, \leq n+k}$.

We just saw how to build colimits in $pr_1(G)/U_{\geq k, \leq n+k}$.

Example

The categories of higher pointed abelian groups

 $K(\mathbb{Z},n)/\mathcal{U}^*_{\geq m,\leq n+m}$ ($K(\mathbb{Z},n)$:= Eilenberg-MacLane space)

with n, m > 0 and m < n inherit colimits from

$$\operatorname{pr}_1(K(\mathbb{Z}, n))/\mathcal{U}_{\geq m, \leq n+m}$$

Takeaway: A useful construction of colimits in A/U

• Technical report:

https://doi.org/10.48550/arXiv.2411.15103

• Agda code:

https://github.com/PHart3/colimits-agda

Takeaway: A useful construction of colimits in A/U

• Technical report:

https://doi.org/10.48550/arXiv.2411.15103

• Agda code:

https://github.com/PHart3/colimits-agda

Thanks!

22/23

Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. 2018. *Higher Groups in Homotopy Type Theory*.

Dan Licata, Guillaume Brunerie. 2015. A Cubical Approach to Synthetic Homotopy Theory.

Egbert Rijke, Michael Shulman, Bas Spitters. 2020. *Modalities in homotopy type theory*.

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

23/23