A mechanized characterization of coherent 2-groups

Perry Hart

University of Minnesota, Twin Cities

MURI Meeting 2025

Plan

1. Generalize the categorical equivalence $\mathbf{Grp} \simeq \mathbf{Ptd}^{conn}_{\leq 1}$ to the case of 2-groups.

Result: "explicit" biequivalence between coherent 2-groups and pointed connected 2-types.

- 2. Use univalence to get an identity between the (2, 1)-category of coherent 2-groups and that of pointed connected 2-types.

 Consider some limitations of the induced identity.
- 3. Consider some questions.

Note: The mathematical development is entirely mechanized in a library based on HoTT-Agda.

The 1-dimensional case

- 1. The delooping of a set-level group G (Licata and Finster): the 1-truncated HIT K(G,1) generated by
 - a point base : K(G, 1)
 - a homomorphism loop : $G \to \Omega(K(G, 1), base)$.

Theorem: loop is an isomorphism.

By the encode-decode method.

2. Equivalence of categories (Buchholtz, van Doorn, and Rijke):

$$\mathsf{Grp} \xrightarrow[\Omega]{K(-,1)} \mathsf{Ptd}^{conn}_{\leq 1}$$

2-groups

A (coherent) 2-group (Baez and Lauda) is a 1-type G with

- a neutral element e
- a binary operation $\otimes: G \to G \to G$, called the *tensor product*
- a right unitor ρ , a left unitor λ , and an associator α for \otimes (all in the sense of paths)
- a triangle identity and a pentagon identity
- an *inverse* operation $(-)^{-1}: G \to G$
- paths $linv_x : x^{-1} \otimes x = id$ and $rinv_x : x \otimes x^{-1} = id$ for each x : G such that linv and rinv satisfy two zig-zag identities.

Concise version: a monoidal univalent groupoid where every element has an adjoint equivalence.

Example

For every pointed 2-type X, the loop space $\Omega(X)$ equipped with path composition has the structure of a 2-group.

A 2-group morphism $G_1 \to G_2$ is a function $f_0: G_1 \to G_2$ equipped with a family of paths $\mu_{x,y}: f_0(x) \otimes f_0(y) = f_0(x \otimes y)$ that respects the associator.

Justification for our short definition of 2-group morphism:

For each function $f_0: G_1 \to G_2$ between the underlying types of 2-groups, the forgetful function

fully explicit notion on $f_0 \ \to \ short$ notion on f_0 is an equivalence.

Delooping a 2-group

Let G be a 2-group.

Construct its delooping by generalizing the delooping K(-,1) of a set-level group.

Form the 2-truncated HIT $K_2(G)$ generated by

- a point base : $K_2(G)$
- a morphism of 2-groups loop : $G \to \Omega(K_2(G), \mathsf{base})$

Note: $K_2(G)$ is a pointed connected 2-type.

Key feature: no path constructors for units or inverses.

Define codes : $K_2(G) \to \mathcal{U}_{\leq 1}$ by recursion on $K_2(G)$.

- 1. codes(base) := G
- 2. a 2-group morphism $\zeta: G \to \Omega(\mathcal{U}_{\leq 1}, G)$ defined as follows:
 - Define $\zeta_{\sf map}: {\sf G} \to ({\sf G} = {\sf G})$ by mapping g to the equivalence

$$\operatorname{post-mult}_g: G \xrightarrow{\cong} G$$
 $\operatorname{post-mult}_g(x) := x \otimes g$

and then applying univ to post-mult_g.

Both post-mult and univ are 2-group morphisms.
 We give ζ_{map} the composite structure.

Let $codes_0 := pr_1 \circ codes$ and define

encode :
$$\prod_{z:K_2(G)}\mathsf{base} = z o \mathsf{codes}_0(z)$$

encode $(z,p) \coloneqq \mathsf{transp}^{\mathsf{codes}_0}(p,\mathsf{e}_G)$

Goal: Prove that

$$\mathsf{eb} \coloneqq \mathsf{encode}(\mathsf{base}) \; : \; \Omega(\mathsf{K}_2(\mathsf{G})) \to \mathsf{G}$$

is inverse to loop.

The harder homotopy: $loop \circ eb \sim id_{base=base}$.

Same strategy as 1-dimensional case:

Define

decode :
$$\prod_{z:K_2(G)} \operatorname{codes}_0(z) \to \mathsf{base} = z$$

by induction on $K_2(G)$ with decode(base) := loop.

Then, by path induction, $decode_z(encode_z(p)) = p$ for all $z : K_2(G)$ and p : base = z as loop preserves the identity element.

The loop case is again an identity $\psi_{\mathsf{loop}}(x,y)$ of type $\mathsf{transp}^{\lambda z.\mathsf{base}=z}(\mathsf{loop}(x),\mathsf{loop}(y)) = \mathsf{loop}(\mathsf{transp}^{\mathsf{codes}_0}(\mathsf{loop}(x),y))$ for all x,y:G.

The major difference from the 1-dimensional case:

The target of the $K_2(G)$ -induction is a 1-type, not a set.

We need to construct a nontrivial coherence between various instances of $\psi_{\rm loop}$ and loop's tensor preservation rule.

No tricks, but quite large.

The equivalence on objects

We now have $\Omega \circ \mathcal{K}_2 \sim \mathrm{id}_{\mathsf{ty}(\mathbf{2Grp})}$. Let's do $\mathcal{K}_2 \circ \Omega \sim \mathrm{id}_{\mathsf{ty}(\mathbf{Ptd}^{conn}_{\leq 2})}$.

Let X be a pointed connected 2-type. Define the pointed map $\varphi_X: K_2(\Omega(X)) \to_* X$ by K_2 -recursion via the identity 2-group morphism $\Omega(X) \to \Omega(X)$.

By φ_X 's computation rule, the following triangle commutes:

Since both X and $K_2(\Omega(X))$ are connected, φ_X is an equivalence.

Bicategories

For us, bicategory means (2,1)-category whose 2-cells are paths.

That is, a bicategory consists of a type Ob of objects together with

- a doubly indexed family hom of 1-types over Ob
- a composition operation $\circ: \mathsf{hom}(b,c) \to \mathsf{hom}(a,b) \to \mathsf{hom}(a,c)$ for all $a,b,c:\mathsf{Ob}$
- an identity morphism id_a for each a: Ob together with two 2-cells (i.e., paths between morphisms): the right unitor and the left unitor
- an associator 2-cell satisfying both the triangle identity with the unitors and the pentagon identity.

Let $\mathcal C$ and $\mathcal D$ be bicategories.

A pseudofunctor from $\mathcal C$ to $\mathcal D$ is a function $F_0:\mathsf{Ob}(\mathcal C)\to\mathsf{Ob}(\mathcal D)$ together with

- a function $F_1: \mathsf{hom}_\mathcal{C}(a,b) o \mathsf{hom}_\mathcal{D}(F_0(a),F_0(b))$ for all $a,b:\mathsf{Ob}$
- a 2-cell $F_{id}(a)$: $F_1(id_a) = id_{F_0(a)}$ for each a : Ob
- a 2-cell $F_{\circ}(f,g)$: $F_1(g \circ f) = F_1(g) \circ F_1(f)$ for all composable morphisms f and g
- coherence identities witnessing that F_○ commutes with the right unitors, with the left unitors, and with the associators.

Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be pseudofunctors.

A pseudotransformation from F to G consists of

- a component morphism $\eta_0(a):F_0(a) o G_0(a)$ for each $a:\mathsf{Ob}(\mathcal{C})$
- a 2-cell $\eta_1(f)$ making the square

$$F_0(a) \xrightarrow{F_1(f)} F_0(b)$$

$$\eta_0(a) \downarrow \qquad \qquad \downarrow \eta_0(b)$$

$$G_0(a) \xrightarrow{G_1(f)} G_0(b)$$

commute for all $a, b : Ob(\mathcal{C})$ and $f : hom_{\mathcal{C}}(a, b)$.

• a coherence identity witnessing that η_1 commutes with the unitors and one witnessing that it commutes with the associators.

The type of such pseudotransformations is denoted by $F \Rightarrow G$.

The biequivalence

A biequivalence between $\mathcal C$ and $\mathcal D$ is a pseudofunctor $F:\mathcal C\to\mathcal D$ together with

- a pseudofunctor $G: \mathcal{D} \to \mathcal{C}$
- a pseudotransformation $\tau_1: F \circ G \Rightarrow \mathrm{id}_{\mathcal{D}}$ each of whose components is an adjoint equivalence in \mathcal{D}
- a pseudotransformation $\tau_2: \mathrm{id}_{\mathcal{C}} \Rightarrow G \circ F$ each of whose components is an adjoint equivalence in \mathcal{C} .

The biequivalence

A biequivalence between $\mathcal C$ and $\mathcal D$ is a pseudofunctor $F:\mathcal C\to\mathcal D$ together with

- a pseudofunctor $G: \mathcal{D} \to \mathcal{C}$
- a pseudotransformation $\tau_1: F \circ G \Rightarrow \mathrm{id}_{\mathcal{D}}$ each of whose components is an adjoint equivalence in \mathcal{D}
- a pseudotransformation $\tau_2: \mathrm{id}_{\mathcal{C}} \Rightarrow G \circ F$ each of whose components is an adjoint equivalence in \mathcal{C} .

Theorem

We have a biequivalence

$$\mathbf{2Grp} \xleftarrow{\mathcal{K}_2} \mathbf{Ptd}^{conn}_{\leq 2}$$

All data of this biequivalence follow from $K_2(G)$ -induction wherever applicable.

An easier way?

From the biequivalence, we extract a pseudofounctor $\Omega:\mathbf{Ptd}^{conn}_{\leq 2}\to\mathbf{2Grp}$ that is an equivalence on objects and homs.

This data ignores most of the hardest constructions for the biequivalence!

By univalence, Ω induces an identity $\mathbf{Ptd}_{\leq 2}^{conn} = \mathbf{2Grp}$.

Then, from an identity, we get whatever we want, including a biequivalence bieq-from-id.

So, why did we construct everything explicitly from scratch?

An easier way?

From the biequivalence, we extract a pseudofounctor $\Omega:\mathbf{Ptd}^{conn}_{\leq 2} \to \mathbf{2Grp}$ that is an equivalence on objects and homs.

This data ignores most of the hardest constructions for the biequivalence!

By univalence, Ω induces an identity $\mathbf{Ptd}_{\leq 2}^{conn} = \mathbf{2Grp}$.

Then, from an identity, we get whatever we want, including a biequivalence bieq-from-id.

So, why did we construct everything explicitly from scratch?

- The full form that bieq-from-id takes is hard to recover.
- Even if recovered, it may be less desirable to work with than our elimination-based constructions.

Future work

1. Can we construct the infinite loop space of a symmetric 2-group G in terms of $K_2(G)$?

with inspiration from the definition of K(G,2) from K(G,1) for abelian groups G

- 2. Some general bicategory theory inside HoTT:
 - recovering a biequivalence from an isomorphism/identity
 - promoting a biequivalence to an adjoint one.

Conclusion

Takeaway: Coherent 2-groups are biequivalent to pointed connected 2-types.

• Preprint:

```
https:
//phart3.github.io/2Grp-biequiv-preprint.pdf
```

Agda code:

```
https://github.com/PHart3/2-groups-agda
```

Thanks!

References

John C. Baez, Aaron D. Lauda. 2004. *Higher-Dimensional Algebra V: 2-Groups*.

Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. 2018. Higher Groups in Homotopy Type Theory.

Daniel R. Licata, Eric Finster. 2014. *Eilenberg-MacLane spaces in homotopy type theory*.