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Abstract

This is a brief introduction to elementary toposes. These play a central role in categorical semantics
of dependent type theory (along with other areas of categorical logic). We assume knowledge of basic
category theory, and our main source for this material is the nLab.

Let C be a category with finite limits. For any object A ∈ ob C , a power object of A is an object P(A) of C
together with a monomorphism ∈A→ A × P(A) such that for every monomorphism f : C → A × D in C ,
there is a unique pullback square of the form

C ∈A

A×D A× P(A)

f

idA ×χf

⌟

.

We call χf the classifying map of f . If A = 1, then a power object of A is called a subobject classifier.

A category E is an elementary topos if it

• has finite limits,

• is cartesian closed, and

• has a subobject classifier true : 1 → Ω.

In this case, any global element 1 → Ω is called a truth value.

Let C be a category with finite limits. The mapping X ∈ ob C 7→ Sub(X), the subobject poset of X,
induces a functor C op → Set sending a map A

f−→ B in C to the function Sub(B) f∗(−)−−−−→ Sub(A) of sets.
The functor Sub(−) is represented by Γ if and only if Γ is a subobject classifier of C . By uniqueness of
representing objects, it follows that a subobject classifier is unique up to isomorphism.

Theorem 1 (Fundamental theorem of topos theory). If E is a topos and X ∈ ob E , then the overcat-
egory E /X is a topos.

Corollary 2. Every topos is locally cartesian closed.

Proposition 3. A category C with finite limits is a topos if and only if every object of C has a power object.

In particular, for any topos E and A ∈ ob E , the exponential object ΩA is a power object of A. In this case,
the power object functor Ω(−) : E op → E sends a map X

f−→ Y in E to the transpose of the composite

ΩY ×X
idΩB ×f
−−−−−→ ΩY × Y

evY,Ω−−−→ Ω

under the adjunction − ×X ⊢ −X . We have a chain of natural isomorphisms

E (X,ΩY ) ∼= E (X × Y,Ω) ∼= E (Y ×X,Ω) ∼= E (Y,ΩX) ∼= E op(ΩX , Y ),

which gives us an adjunction
(
Ω(−))op ⊢ Ω(−). By an argument due to Paré, this adjunction is monadic

in the sense that Ω(−) reflects isomorphisms and preserves reflexive coequalizers, which implies that Ω(−)

creates limits. Since E has finite limits as a topos, it follows that E op has finite limits, i.e., E has finite
colimits. In particular, E has an initial object 0.

Lemma 4. The initial object of E is strict.
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Proof. Let X ∈ ob E and f : X → 0. We must show that f is an isomorphism. Notice that the map 0 id0−−→ 0
is both initial and terminal in the overcategory E /0. The pullback functor f∗ : E /0 → E /X has a left
adjoint and thus preserves limits. Therefore, g := f∗(id0) is terminal in E /X. We thus have an isomorphism
h : g

∼=−→ idX . Moreover, f∗ has a right adjoint by Corollary 2 and thus preserves colimits. Hence g is also
initial in E /X. This means that dom(g) = 0, and f ◦g = id0. The map h gives us an isomorphism h : 0

∼=−→ X
in E such that g = idA ◦h. This implies that f = h−1, so that f is an isomorphism.

Corollary 5. For any X ∈ ob E , the unique map 0 → X is monic.

Notably, the classifying map of 0 → 1 is called false.

Proposition 6. Suppose that Ω f−→ Ω is monic. Then f ◦ f = idΩ (so that f is an automorphism).

Example 7.

1. The category Set is a Boolean topos, i.e., Ω ∼= 1
∐

1.

2. For any small category C , the presheaf category Ĉ := [C op,Set] is a topos where the functor Ω sends
U ∈ ob C to the set sieves(U) of sieves on U , i.e., sets σ of morphisms over U such that for any
morphisms f : X → Y and g : Y → U in C ,

Y
g−→ U ∈ σ =⇒ X

f−→ Y
g−→ U ∈ σ.

The action of Ω on morphisms in C is defined by

V
h−→ U 7→ σ 7→ {f : X → V | h ◦ f ∈ σ, X ∈ ob C } .

The sieve on U generated by idU is the top element sievetop(U) of sieves(U). We define true : 1 → Ω
as the natural transformation with components

true(U) : {∗} → sieves(U)
∗ 7→ sievetop(U).

For any monomorphism φ : F ↪→ G in Ĉ , the classifying map of φ has components

χφ(U) : G(U) → Ω(U)
x 7→ {f : X → U | G(f)(x) ∈ F (X), X ∈ ob C } .

The subobject Ωdec ↪→ Ω consisting of decidable sieves classifies all monomorphisms F ψ−→ G in Ĉ such
that ψA : F (A) → G(A) has decidable image for every A ∈ ob C . Here, for any set T , a subset S ⊂ T
is decidable if and only if for any x ∈ T , the disjunction x ∈ S ∨ x /∈ S is provable. If our metatheory
includes LEM, then Ωdec = Ω.

Definition 8 (Heyting algebra). Let L be a bounded lattice. We say that L is a Heyting algebra if it has
a binary operation ⇒: L× L → L, called implication, such that

p ⇒ p = 1
p ∧ (p ⇒ q) = p ∧ q

q ∧ (p ⇒ q) = q

p ⇒ (q ∧ r) = (p ⇒ q) ∧ (p ⇒ r) .

For any topos E and A ∈ ob E , the poset Sub(A) is a Heyting algebra. As a result, Sub(A) is a model of
intuitionistic propositional calculus. For example, the meet ∩ and join ∪ operation for Sub(A) are precisely
the binary product and binary coproduct in Sub(A), respectively.
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Proposition 9. Let U1 and U2 be subobjects of A.

1. We have a pullback square
U1 ∩ U2 U2

U1 A

⌟

in E consisting of monomorphisms.

2. We have a pushout square
U1 ∩ U2 U2

U1 U1 ∪ U2

A

⌟

α

in E where α is a monomorphism.

Moreover, implication Sub(A) × Sub(A) ⇒−→ Sub(A) is defined by

U1 ⇒ U2 = ΠU1(U1 ∩ U2),

where Π denotes the dependent product.

Remark 10. A Boolean algebra is a Heyting algebra L where every x ∈ L has a complement, i.e., an element
cx ∈ L such that x∨ cx = 1 and x∧ cx = 0. A topos E is Boolean if and only if Sub(A) is a Boolean algebra
for all A ∈ ob E . In this case, Sub(A) satisfies LEM.

Let E be a topos and consider a map El : Û → U in E . We say that a map f : X → Y in E is U -small if
there exists a pullback square of the form

X Û

Y U

Elf
⌟ . (∗)

Note that the class of U -small maps is closed under pullbacks. We say that El is a universe in E if the class
of U -small maps

(a) is closed under

• products,
• dependent sums,
• dependent products, and
• pullbacks of 1 true−−−→ Ω and

(b) contains the unique map Ω → 1.

Condition (b) expresses that U is impredicative.

Although the square (∗) need not be unique, it is when U has the structure of a univalent type universe.

Example 11. The subobject classifier is a predicative universe as long as Ω ̸= 1, and the Ω-small maps are
precisely the monomorphisms.

Remark 12. Closure under dependent sums is sometimes used as an alternative definition of impredicative,
in which case Ω is impredicative. Unfortunately, both definitions appear in the type theory literature.
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