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Abstract

After presenting our variant of constructive dependent type theory (CDTT), we develop the
language necessary to postulate Voevodsky’s univalence axiom (Univ), which formally encodes
the identification of equivalent objects, in any categorical model of CDTT. Afterwards, we
describe the original construction of a model of CDTT + Univ in the (Quillen) model category
of simplicial sets, due mainly to Voevodsky.
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Overview
Our ultimate goal is to construct a certain model category in which every theorem of CDTT + Univ is
true. As we shall see, this model category interprets a dependent type as a fibration. The univalence
axiom is so named because in any model category satisfying it, the canonical fibration over a chosen
universe of types U is univalent, i.e., every fibration with small enough fibers is an essentially unique
pullback of it. In the language of ∞-category theory, this means that a univalent fibration is a
classifier for the class of all such fibrations.

It need not be the case, though, that CDTT + Univ is modeled by any model category with object
classifiers. In the categorical semantics of CDTT, the syntactic substitution of a term t for a variable
occurring in a dependent type B is interpreted as a pullback of the fibration interpreting B along
the morphism interpreting t. But substitution is strictly functorial, whereas pullback is merely
functorial up to isomorphism. Thus, any model of CDTT + Univ needs at least enough structure
to make pullbacks in it along certain fibrations strictly associative. Our chosen model category will
have such structure, as well as enough structure to model the strict behavior of the type constructors
of CDTT. Finally, we must find an object classifier in our model category that is strictly “closed”
under these type constructors.

1 Martin-Löf dependent type theory (MLDTT)
In this section and Section 2.1, we present a particular variant of (intensional) Martin-Löf dependent
type theory, another name for constructive dependent type theory, in honor of the Swedish logician
Per Martin-Löf. In the type theory literature, there are many other variants of the same theory.
These differ from ours only in which logical/type constructors they include. The more one includes,
the more expressive it is. Usually, other variants include at least our constructors for the unit type,
the dependent product, and the dependent sum.

1.1 Syntax
A Martin Löf dependent type theory is a system of natural deduction whose object- and meta-
languages are defined as follows. (See Section A for a review of deductive systems.)

Object language
Our presentation of the object language is inspired by [1].

First of all, we are given a countably infinite set of variables

V := {v0, v1, v2, . . .}

along with the auxiliary symbols ‘:’, ‘,’, ‘(’, and ‘(’. Note that V inherits the well-ordering ≤ of N.
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We want to build our language out of variables and auxiliary symbols

Definition 1.1.1.

1. An arity is a tuple of the form

((n1, β1), (n2, β2), . . . , (nk, βk), β)

where k ∈ N and β, βi ∈ {0, 1} for each 1 ≤ i ≤ k. Let Ar denote the set of all arities.

2. A signature is a pair (Σsym, α) consisting of a set Σsym of logical symbols/constructors and a
function α : Σsym → Ar . The value

α(s) = ((n1, β1), (n2, β2), . . . , (nk, βk), β)

is called the arity of s. If s has arity 0, then it is called a term-valued symbol. If it has arity
1, then it is called a type-valued symbol.

Definition 1.1.2 (0- and 1-expressions). Let (Σsym, α) be a signature. By mutual recursion,
define the set Σsym

0 of 0-expressions and the set Σsym
1 of 1-expressions so that

(i) every variable is a 0-expression and

(ii) if s ∈ Σsym has arity ((n1, β1), . . . , (nk, βk), β) and Mi is a βi-expression and xi1, x
i
2, . . . , x

i
ni

is
a list of pairwise distinct variables for each i ∈ {1, 2, . . . , k}, then

s
(
x1

1.x
1
2. . . . .x

1
n1
.M1, . . . , x

k
1 .x

k
2 . . . . .x

k
nk
.Mk

)
is a β-expression.

If k = 0, then we write s instead of s() and say that s is a constant symbol.

Terminology. Other names for a 0-expression and 1-expression are term expression/constructor and
type expression/constructor, respectively.

Think of the arity
α(s) = ((n1, β1), (n2, β2), . . . , (nk, βk), β)

of s as specifying an operation that

(a) takes k expressions as inputs (the sort of each indicated by βi) with ni pairwise distinct
variables bound in the i-th input and

(b) outputs a new expression whose sort is indicated by β.

Let us add one more kind of expression to the object language.

Definition 1.1.3 (Context). A context is a list of the form

x1 : A1, x2 : A2, . . . , xn : An

such that

• each xi denotes a variable,
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• each Ai denotes a 1-expression, and

• for any i, j ≥ 1 with i ̸= j, we have that xi and xj denote distinct variables, i.e., each variable
in the list is a fresh variable.

We say that the context declares the variables x1, . . . , xn.

The set of raw terms / expressions is taken to be Σexp
0 ∪ Σexp

1 ∪ X where X denotes the set of all
contexts.

Thus, the object language of a particular dependent type theory is determined by its signature.
All but one logical symbol in our specific MLDTT will appear in at least one of the inference rules
postulated in Section 1.3, Section 1.5, or Section 2.1. The other one (namely univ) will appear in
the univalence axiom (Definition 2.4.2). The arity of each logical symbol will be evident.

Table 1: A fragment of our signature
Symbol Arity

Π ((0,1), (1,1), 1)
λ ((0,1), (1,1), (1,0), 0)
Σ ((0,1), (1,1), 1)
0 (1)
1 (1)
2 (1)
02 (0)
U (1)
el ((0,0), 1)
Id ((0,1), (0,0), (0,0), 1)

Definition 1.1.4 (Free variable).

1. Let t be a raw term other than a context. If t is a variable, then we say that t is free in itself.
Otherwise, by construction, t is of the form

s
(
x1

1.x
1
2. . . . .x

1
n1
.M1, . . . , x

k
1 .x

k
2 . . . . .x

k
nk
.Mk

)
.

If x is a variable occurring in t and x /∈
{
xij | i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}

}
, then x is free in

t. If x = xij for some i and j, then we say that x is bound in Mi.

2. For any context x1 : A1, . . . , xn : An︸ ︷︷ ︸
Γ

, a variable x is free in Γ if x = xi for some 1 ≤ i ≤ n or

x is free in Ai for some i.

The set of free variables in an expression ρ is denoted by FV(ρ).

Example 1.1.5.

1. If A and B are 1-expressions and x is a variable, then the raw term Πx:AB := Π(A, x.B) is a
1-expression with x bound in B.
This is similar to a first-order formula such as ∀x.ψ, where x is bound in ψ.
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2. If A and B are 1-expressions, t is a term, and x is a variable, then the raw term λ(x : A).t :=
λ(A, x.A, x.t) is a 0-expression with x bound in A and t.
This is similar to a first-order definition of a function such as f(x) = x+ yz, where x is bound
in x+ yz.

Meta-language
By assumption, the meta-language contains a countably infinite set of meta-variables, which range
over raw terms.
Notation.

• The symbols xi, yi, x, y, z, x′, etc. will refer to arbitrary variables.

• The symbols Γ, ∆, Θ, Γ′, Γi, etc. will refer to arbitrary contexts.

• The symbols a, b, c, d, e, f , g, h, m, t, s, t′, ti, si, τ , etc. will refer to arbitrary 0-expressions.

• The symbols A, B, C, A′, B′, C ′, Ai, etc. will refer to arbitrary 1-expressions.

For readability, we may write A(x1, . . . , xn) in the meta-language to indicate that the variables
occurring in the 1-expression denoted by A include x1, . . . , xn.

Any judgment will have one of six forms.

1. (well-formed context) “Γ is a well-formed context,” formally,

ctx(Γ).

2. (equality of contexts) “Γ and ∆ are judgmentally equal well-formed contexts,” formally,

Γ ≡ ∆ ctx .

3. (typehood) “A is a well-formed type in context Γ,” formally,

Γ ⊢ A type .

4. (typing declaration) “a is a (well-formed) term of type A / inhabiting A in context
Γ,” formally,

Γ ⊢ a : A.

5. (equality of types) “A and B are judgmentally equal well-formed types in context Γ,”
formally,

Γ ⊢ A ≡ B type .

6. (equality of terms) “a and b are judgmentally equal well-formed terms of type A in
context Γ,” formally,

Γ ⊢ a ≡ b : A.

A generic judgment refers to any judgment with one of the last four forms. A generic judgment
consists of an antecedent Γ and a consequent, e.g., A type. We call such a judgment a hypothetical
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judgment, thinking of Γ as a list of hypotheses. For example, the theory of a category C has as
an axiom x : obj, y : obj ⊢ hom(x, y) type. Intuitively, this is intended to mean that hom(x, y) is a
well-formed type whenever x and y are objects in C .
Notation. The symbol K will denote the consequent of a generic judgment.

Note that the inference rules of a MLDTT induce six relations on the set of all raw terms, which
determine the subset of raw terms that are well-formed.

Finally, we define a family of total operations on expressions and then define another such family in
terms of it.

Definition 1.1.6 (Capture-free substitution). Let y be a variable and t be a term expression.
Let ρ be any expression. Define the (capture-free) substitution of t for (free occurrences of) y in ρ,
denoted by

ρ[t/y],

as follows.

1. Suppose that ρ is not a context. Then ρ[t/x] is the finite string obtained recursively by

(a) x[t/y] =
{
t x = y

x x ̸= y
,

(b) κ[t/y] = κ where κ denotes a constant symbol, and

(c) s

x1
1.x

1
2. . . . .x

1
n1
.M1, . . . , x

k
1 .x

k
2 . . . . .x

k
nk
.Mk︸ ︷︷ ︸

k≥1

[t/y] = s(N1, . . . , Nk)

where for each i ∈ {1, . . . , k},

Ni =
{
x̃i1.x̃

i
2. . . . .x̃

i
ni
.Mi[t/y] y /∈

{
xi1, . . . , x

i
ni

}
xi1.x

i
2. . . . .x

i
ni
.Mi otherwise

such that for any 1 ≤ j ≤ ni, we choose x̃ij to be the least variable z ≥ xij with
z /∈ {x̃i1, . . . , x̃ij−1} ∪ FV(Mi) ∪ FV(t).

2. If ρ is a context, then ρ[t/y] is the context obtained recursively by

(a) ϵ[t/y] = ϵ, where ϵ denotes the empty list, and

(b)

x1 : A1, . . . , xk : Ak︸ ︷︷ ︸
k≥1

[t/y] =

{
(x1 : A1, . . . , xk−1 : Ak−1)[t/y], x̃k : Ak[t/y] xi ̸= y, i = 1, . . . , k
ϵ otherwise

where we choose x̃k to be the least variable z ≥ xk such that z /∈ {x1, . . . , xk−1} ∪FV(t).

We extend this definition in the obvious way to a definition of the substitution of t for x in K,
denoted by K[t/x].
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Remark 1.1.7. We have defined substitution so as to avoid obtaining a raw term in which variables
intended to be free are captured, i.e., become bound. For example, in the language of arithmetic,
naively substituting the variable y for x in the formula ∃y(x+ y = 1) results in ∃y(y+ y = 1), which
is not logically equivalent to the original formula. Rather, one ought to first convert ∃y(x+ y = 1)
to something like ∃z(x+ z = 1) and then naively substitute y for x in it.

Definition 1.1.8 (Simultaneous substitution). Let x1, . . . , xn be pairwise distinct variables
and let t1, . . . , tn be term expressions such that

(FV(t1) ∪ · · · ∪ FV(tn)) ∩ {x1, . . . , xn} = ∅.

Let ρ be any expression. Define the simultaneous substitution of t1, . . . , tn for x1, . . . , xn in ρ,
denoted by

ρ[t1, . . . , tn/x1, . . . , xn],

as the term
ρ[t1/x1][t2/x2] · · · [tn/xn],

which is obtained by iterated substitution. We extend this definition in the obvious way to a defini-
tion of the simultaneous substitution of t1, . . . , tn for x1, . . . , xn in K, denoted byK[t1, . . . , tn/x1, . . . , xn].

Example 1.1.9.

1. (λ(x : A).y)[z/x] = λ(x : A).y.

2. (λ(v1 : A).v2)[v0, v3/v2, v1] = λ(v1 : A).v0.

1.2 Structural rules
We also require any MLDTT to include certain inference rules known as structural rules, which we
now list.
First, we postulate four structural rules, which govern the formation and equality of well-formed
contexts:

ctx(ϵ)
(where ϵ denotes the empty list)

x1 : A1, . . . , xn−1 : An−1 ⊢ An type

ctx(x1 : A1, . . . , xn : An)
(when xn /∈ {x1, . . . , xn−1})

ϵ ≡ ϵ ctx

Γ ≡ ∆ ctx Γ ⊢ A ≡ B type

Γ, x : A ≡ ∆, y : B ctx
(when x /∈ FV(Γ) and y /∈ FV(∆))

where
x1 : A1, . . . , xn−1 : An−1

is, by convention, the empty context when n = 1. It follows that a context is well-formed exactly
when it is either empty or an expression of the form

x1 : A1, x2 : A2, . . . , xn : An

such that
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• if 2 ≤ k ≤ n, then
x1 : A1, x2 : A2, . . . , xk−1 : Ak−1 ⊢ Ak type

and

• if n = 1, then
⊢ A1 type .

In this case, we say that A1 is a closed type. Also, if a is a term of type A in the empty context,
then we say that a is a closed term.

Note 1.2.1. It turns out that, in light of all of our inference rules to be presented, the following
meta-theoretic property will be true of our system:

For any well-formed context
x1 : A1, . . . , xn : An,

we have that FV(Ai) ⊂ {x1, . . . , xi−1}. Moreover, if we can derive both ctx(Γ) and Γ ⊢
a : A, then any free variable in either a or A must be declared by Γ.

In addition, we postulate the rules

ctx(Γ)
Γ ≡ Γ ctx

Γ ≡ ∆ ctx

∆ ≡ Γ ctx

Γ ≡ ∆ ctx ∆ ≡ Θ ctx

Γ ≡ Θ ctx ,

which together assert that equality of contexts is an equivalence relation.

To be able to manipulate variables for convenience in our derivations, we postulate four more struc-
tural rules:

Vble
ctx(Γ, x : A,∆)

Γ, x : A,∆ ⊢ x : A
Subst

Γ ⊢ a : A Γ, x : A,∆ ⊢ K
Γ,∆[a/x] ⊢ K[a/x]

Wkg
Γ ⊢ A type Γ,∆ ⊢ K

Γ, x : A,∆ ⊢ K
(when x is not free in Γ,∆)

Exchange
Γ, x : A, y : B,∆ ⊢ K
Γ, x : B, y : A,∆ ⊢ K

(when x is not free in B)

α-conv-ctx
Γ, x : A,∆ ⊢ K

Γ, x′ : A,∆[x′/x] ⊢ K[x′/x]
(when x′ is not free in Γ, x : A,∆)

.

(i) The variable rule Vble asserts that each declared variable in a well-formed context is well-
typed.

(ii) The substitution rule Subst asserts that substituting a declared variable with a term of the
same type preserves K.

(iii) The weakening rule Wkg asserts that expanding the context by a fresh variable of type A
(known as weakening by A) preserves K.

(iv) The exchange rule Exchange asserts that certain permutations of the context preserve K.
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(v) The context α-conversion α-conv-ctx rule asserts that renaming a declared variable as a fresh
variable preserves K.

Additionally, we postulate the structural rules

Γ ⊢ a ≡ b : A Γ, x : A,∆ ⊢ B type

Γ,∆[a/x] ⊢ B[a/x] ≡ B[b/x] type

Γ ⊢ a ≡ a′ : A Γ, x : A,∆ ⊢ b : B
Γ,∆[a/x] ⊢ b[a/x] ≡ b[a′/x] : B[a/x]

,

which assert certain congruence conditions for judgmental equality of terms.

Next, we postulate those structural rules governing judgmental equality of types. Specifically, we
have the rules

Γ ⊢ A type

Γ ⊢ A ≡ A type

Γ ⊢ A ≡ B type

Γ ⊢ B ≡ A type

Γ ⊢ A ≡ B type Γ ⊢ B ≡ C type

Γ ⊢ A ≡ C type
,

which together assert that judgmental equality of types is an equivalence relation, along with the
variable conversion rule

Γ ⊢ A ≡ B type Γ, x : A,∆ ⊢ K
Γ, x : B,∆ ⊢ K

.

Finally, we postulate those structural rules governing judgmental equality of terms.

Γ ⊢ a : A
Γ ⊢ a ≡ a : A

Γ ⊢ a ≡ b : A
Γ ⊢ b ≡ a : A

Γ ⊢ a ≡ b : A Γ ⊢ b ≡ c : A
Γ ⊢ a ≡ c : A

Γ ⊢ a : A Γ ⊢ A ≡ B type

Γ ⊢ a : B
Γ ⊢ a ≡ b : A Γ ⊢ A ≡ B type

Γ ⊢ a ≡ b : B
.

Together, these assert that judgmental equality of terms is an equivalence relation respected by
typing.

1.3 Logical rules
In addition to our structural rules, our MLDTT postulates certain inference rules known as logical
rules. These allow us to define various types inductively. We can describe five main kinds of logical
rules.

1. A type formation rule, which asserts those conditions under which we can use a type constructor
to form a new type B.

2. A term introduction rule, which asserts those conditions under which we can use a a term
constructor to form a term of type B.
This term is called a canonical term of type B.

3. A term elimination rule (sometimes called an induction principle), which asserts that to define
a “section over B” it is both necessary and sufficient to define it on the term constructors for
B. That is, it is enough to define it on the canonical terms of type B.

4. A computation rule, whose conclusion is a judgmental equality allowing us to rewrite the result
of applying term elimination to a term formed by term introduction.
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5. A congruence rule, which asserts that a given logical constructor preserves judgmental equality
in each of its arguments.

An inductive type is governed by at least a type formation rule and an induction principle. An
inductive type is non-degenerate if it is governed by all five kinds of rule (among others).

Dependent products (Π-types)

Π-form
Γ ⊢ A type Γ, x : A ⊢ B(x) type

Γ ⊢ Πx:AB(x) type

Π-intro
Γ, x : A ⊢ B(x) type Γ, x : A ⊢ b(x) : B(x)

Γ ⊢ λ(x : A).b(x) : Πx:AB(x)

Π-elim
Γ ⊢ f : Πx:AB(x) Γ ⊢ a : A

Γ ⊢ app(f, a) : B[a/x]

Π-comp
Γ, x : A ⊢ B(x) type Γ, x : A ⊢ b(x) : B(x) Γ ⊢ a : A

Γ ⊢ app(λ(x : A).b(x), a) ≡ b[a/x] : B[a/x]

Π-cong(1)
Γ ⊢ A ≡ A′ type Γ, x : A ⊢ B(x) ≡ B′(x) type

Γ ⊢ Πx:AB(x) ≡ Πx:A′B′(x) type

Π-cong(2)
Γ ⊢ A ≡ A′ type Γ, x : A ⊢ B(x) ≡ B′(x) type Γ, x : A ⊢ b(x) ≡ b′(x) : B(x)

Γ ⊢ λ(x : A).b(x) ≡ λ(x : A′).b′(x) : Πx:AB(x)

Π-η
Γ ⊢ f : Πx:AB(x)

Γ ⊢ f ≡ λ(x : A).app(f, x) : Πx:AB(x)

A judgment Γ ⊢ A type together with a judgment

Γ, x : A ⊢ B(x) type

is called a type family B over A. Informally, this corresponds to the fiber bundle
π :
∐
x∈AB(x)↠ A. Moreover, we can think of an inhabitant f of the dependent product Πx:AB(x)

as a set-theoretic function f : A→
⋃
x∈AB(x) where f(x) ∈ B(x) for each x ∈ A (i.e., f is a choice

function). We can also think of f as a section of the fiber bundle determined by Γ, x : A ⊢ B(x) type.
In any case, we shall call such an f a section of B over A or a dependent function on A.

Notation.

• We may write λx.b(x) for the expression λ(x : A).b(x).

• We may write f(a) and f(x) for the expressions app(f, a) and app(f, x), respectively.

Example 1.3.1 (Function types). Using the weakening rule, we get the derivation

Γ ⊢ A type Γ ⊢ B type

Γ, x : A ⊢ B type

Γ ⊢ Πx:AB type .
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In context Γ, the expression Πx:AB is called the type of (non-dependent) functions from A to B.
Thus, a non-dependent function is a special case of a dependent one.

Notation. We may write A→ B or BA for the type of functions from A to B. To avoid ambiguity,
we stipulate that the symbol → is right associative.

Example 1.3.2 (Swap function). We can apply the exchange rule together with the context
α-conversion rule to obtain the derivation

Γ ⊢ A type Γ ⊢ B type Γ, x : A, y : B ⊢ C(x, y) type
ctx(Γ, f : Π(x:A)Π(y:B)C(x, y), x : A, y : B)

Γ, f : Π(x:A)Π(y:B)C(x, y), x : A, y : B ⊢ f(x)(y) : C(x, y)
Γ, f : Π(x:A)Π(y:B)C(x, y), y : B, x : A ⊢ f(y)(x) : C(x, y)

Γ, f : Π(x:A)Π(y:B)C(x, y) ⊢ λy.λx.f(y)(x) : Π(y:B)Π(x:A)C(x, y)
Γ ⊢ λf.λy.λx.f(y)(x) :

(
Π(x:A)Π(y:B)C(x, y)

)
→
(
Π(y:B)Π(x:A)C(x, y)

)
.

Intuitively, this shows that we can switch the order of two independent arguments of a dependent
function.

Note 1.3.3 (α-equivalence). Moreover, we shall postulate certain α-conversion rules when defining
a new inductive type. In the case of Π-types, these are precisely

Γ, x : A ⊢ B(x) type

Γ ⊢ Πx:AB(x) ≡ Πx′:AB[x′/x] type
(when x′ is not free in Γ, x : A)

Γ, x : A ⊢ b(x) : B(x)
Γ ⊢ λx.b(x) ≡ λx′.b[x′/x] : Πx:AB(x)

(when x′ is not free in Γ, x : A)

These assert that we can always rename bound variables in λ- or Π-expressions so long as we avoid
variable capture. We shall tacitly assert similar rules for each subsequent logical constructor.

Definition 1.3.4.

1. Using the variable rule, we get the derivation

ctx(Γ, x : A) Γ ⊢ A type

Γ, x : A ⊢ x : A
Γ ⊢ λx.x : A→ A .

We call λx.x the identity map on A, written as idmapA.

2. Using both the variable and weakening rules, we get the derivation

ctx(Γ, y : B, x : A) Γ ⊢ A type

Γ, y : B ⊢ y : B
Γ, y : B, x : A ⊢ y : B

Γ, y : B ⊢ λx.y : A→ B .

We call λx.y the constant map at y, denoted by consy.
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3. It is straightforward yet tedious to derive the rule

Γ ⊢ A type Γ ⊢ B type Γ ⊢ C type
ctx(Γ, g : CB , f : BA, x : A, y : B)

Γ ⊢ λg.λf.λx.g(f(x)) : CB → (BA → CA) .

We write j ◦ h for
app(app(λg.λf.λx.g(f(x)), j), h),

called the composition of j with h.1

Theorem 1.3.5. The rule

Γ ⊢ f : A→ B Γ ⊢ g : B → C Γ ⊢ h : C → D

Γ ⊢ (h ◦ g) ◦ f ≡ h ◦ (g ◦ f) : A→ D

is derivable.2 Hence function composition is associative.

Dependent sums (Σ-types)
Remark 1.3.6. From now on, we shall postulate tacitly a congruence rule cong for each new logical
constructor that we define. This rule will be like that found in our definition of Π-types.

Σ-form
Γ ⊢ A type Γ, x : A ⊢ B(x) type

Γ ⊢ Σx:AB(x) type

Σ-intro
Γ, x : A ⊢ B(x) type Γ ⊢ a : A Γ ⊢ b : B[a/x]

Γ ⊢ pair(a, b) : Σx:AB(x)

Σ-elim
Γ, z : Σx:AB(x) ⊢ C(z) type Γ, x : A, y : B(x) ⊢ d(x, y) : C[pair(x, y)/z] Γ ⊢ p : Σx:AB(x)

Γ ⊢ split(z.C, x.y.d, p) : C[p/z]

Σ-comp

Γ, z : Σx:AB(x) ⊢ C(z) type
Γ, x : A, y : B(x) ⊢ d(x, y) : C[pair(x, y)/z]

Γ ⊢ a : A Γ ⊢ b : B[a/x]
Γ ⊢ split(z.C, x.y.d, pair(x, y)) ≡ d[a, b/x, y] : C[pair(a, b)/z]

Informally, we can think of a dependent sum Σx:AB(x) as a set-theoretic disjoint union
∐
x∈AB(x).

Notation. We may write pair(x, y) as (x, y).

Note 1.3.7. Intuitively, Σ-elim asserts that to construct a dependent function out of Σx:AB(x), it
suffices to construct, for each canonical element (a, b), a term of type C[(a, b)/z].

1[20, Definition 2.2.4] includes a full derivation.
2[20, Lemma 2.2.5].
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Definition 1.3.8. Suppose that we have a type family B over A.

1. Define the first projection map pr1 : (Σx:AB(x))→ A inductively by

pr1(x, y) := x.

Notation. In the style of programming languages, the symbol := here means that pr1 is syn-
tactic sugar for split(A, x.y.x, (x, y)). In particular, pr1 is not a symbol in our object language.
We shall make use of sugaring throughout.

2. Define the second projection map pr2 : Π(p:Σ(x:A)B(x))B(pr1(p)) inductively by

pr2(x, y) := y.

Example 1.3.9 (Product types). Using the weakening rule, we get the derivation

Γ ⊢ A type Γ ⊢ B type

Γ, x : A ⊢ B type

Γ ⊢ Σx:AB type .

In context Γ, the expression Σx:AB is called the (cartesian) product of A and B.

Notation. We may write A×B for the product of A and B.

Empty type (0)

0-form
ctx(Γ)

Γ ⊢ 0 type
0-elim

Γ, x : 0 ⊢ C(x) type Γ ⊢ a : 0
Γ ⊢ ind0(x.C, a) : C[a/x]

Note that the empty type is a degenerate inductive type. In particular, if one can derive a typing

declaration of the form Γ ⊢ t : 0, then one can derive any typing declaration with context Γ. Thus,
the empty type corresponds, informally, to the empty set in set theory for if one can prove ∃x(x ∈ ∅),
then one can prove any sentence in the language of set theory.

Unit type (1)

1-form
ctx(Γ)

Γ ⊢ 1 type
1-intro

ctx(Γ)
Γ ⊢ ⋆ : 1

1-elim
Γ, x : 1 ⊢ C(x) type Γ ⊢ c : C[⋆/x] Γ ⊢ a : 1

Γ ⊢ ind1(x.C, c, a) : C[a/x]

1-comp
Γ, x : 1 ⊢ C(x) type Γ ⊢ c : C[⋆/x]

Γ ⊢ ind1(x.C, c, ⋆) ≡ c : C[⋆/x]

Note that in any well-formed context Γ, we have that ⋆ is the unique term of type 1. Thus, the unit
type corresponds, informally, to a singleton set in set theory.
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Boolean type (2)

2-form
ctx(Γ)

Γ ⊢ 2 type
2-intro(1)

ctx(Γ)
Γ ⊢ 02 : 2

2-intro(2)
ctx(Γ)

Γ ⊢ 12 : 2

2-elim

Γ, x : 2 ⊢ C(x) type Γ ⊢ c : C[02/x] Γ ⊢ d : C[12/x]
Γ ⊢ a : 2

Γ ⊢ ind2(x.C, c, d, a) : C[a/x]

2-comp(1)
Γ, x : 2 ⊢ C(x) type Γ ⊢ c : C[02/x]

Γ ⊢ ind2(x.C, c, 02) ≡ c : C[02/x]

2-comp(2)
Γ, x : 2 ⊢ C(x) type Γ ⊢ d : C[12/x]

Γ ⊢ ind2(x.C, d, 12) ≡ d : C[12/x]

Informally, the Boolean type corresponds to the set of truth values {F, T} in propositional logic.

1.4 Propositions as types
The following table describes the so-called Curry-Howard correspondence.

Table 2: Logical and set-theoretic interpretations of type theory
FOL (with bounded quantifiers) Set theory Type theory

Proposition Set Well-formed type
Proof Element Inhabitant
¬A Ac A→ 0
A ∧B A×B A×B
A→ B BA A→ B
∀x:AB(x)

∏
x∈AB(x) Πx:AB(x)

∃x:AB(x)
∐
x∈AB(x) Σx:AB(x)

⊤ {0} 1
⊥ ∅ 0

In particular, this correspondence between first-order logic and type theory, called the propositions-
as-types doctrine, encodes a system of constructive logic inside our type theory. (It is constructive in
the sense that proving a proposition P corresponds to constructing a term of type P .) For example,
negation in our MLDTT corresponds to the principle of explosion in constructive logic, and Π-elim
corresponds to modus ponens. In addition, the propositions-as-types doctrine automatically provides
us with a type-theoretic notion of logical equivalence.

Definition 1.4.1 (Logical equivalence). Suppose that we have derived a rule of the form

J1 . . . Jn

Γ ⊢ A type Γ ⊢ B type
Γ ⊢ f : A→ B Γ ⊢ g : B → A

where each Ji denotes a judgment. Then we say that the type expressions A and B are logically
equivalent.
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1.5 The universe (U)
With the following logical rules, we define a closed type called the universe (type) such that it is
closed under all of our logical constructors.

⊢ U type x : U ⊢ el(x) type

Γ ⊢ a : U Γ, x : el(a) ⊢ b(x) : U
Γ ⊢ Π̂(a, x.b) : U

Γ ⊢ a : U Γ, x : el(a) ⊢ b(x) : U
Γ ⊢ el(Π̂(a, x.b)) ≡ Πx:el(a)el(b(x)) type

Γ ⊢ a : U Γ, x : el(a) ⊢ b(x) : U
Γ ⊢ Σ̂(a, x.b) : U

Γ ⊢ a : U Γ, x : el(a) ⊢ b(x) : U
Γ ⊢ el(Σ̂(a, x.b)) ≡ Σx:el(a)el(b(x)) type

⊢ 0̂ : U ⊢ el(0̂) ≡ 0 type

⊢ 1̂ : U ⊢ el(1̂) ≡ 1 type

⊢ 2̂ : U ⊢ el(2̂) ≡ 2 type

Definition 1.5.1. We say that a well-formed type A in context Γ is small if we can derive

Γ ⊢ Â : U Γ ⊢ el(Â) ≡ A type

for some expression Â.

From a set-theoretic viewpoint, Â is a lift of A under el.

Example 1.5.2. If A is a small type in context Γ and B(x) is a small type in context Γ, x : A, then
Πx:AB(x) is a small type in context Γ.

We can view el as an interpretation operator (in a semantic sense) so that each inhabitant X of U
in context Γ is a name for the genuine type el(X).

Aside. We could not assert that every type has type U, in which case U inhabits U. For then we’d
obtain an encoding of Russell’s paradox known as Girard’s paradox, so that our MLDTT would be
inconsistent (i.e., we could construct a closed term of type 0). We could postulate a sequence of
universes (Ui)i∈N governed by the rule schemata

ctx(Γ)
Γ ⊢ Ui : Ui+1

Γ ⊢ A : Ui
Γ ⊢ A : Ui+1

.

Such a sequence is called a cumulative hierarchy.3 In this case, we would alter our MLDTT by
removing judgments of typehood and expressing that A is a well-formed type via a typing declaration
such as Γ ⊢ A : Ui. This approach is taken by [25].

3Each stage of this hierarchy is called a universe à la Russell. The universe in our MLDTT is called a universe à
la Tarski.
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2 Homotopy type theory
In this section, our goal is to develop enough classical homotopy theory within our MLDTT to
motivate and state the univalence axiom. This form of homotopy theory is known as synthetic
homotopy theory. This is precisely the area that both [25] and [20] cover. Synthetic homotopy
theory has produced some new proofs of old theorems, such as the Freudenthal suspension theorem.

Throughout this section, we shall mention a new, informal interpretation of Martin-Löf dependent
type theory in which each well-formed type represents (the homotopy type of) a topological space.
This interpretation will be made precise by way of categorical semantics.

Remark 2.0.1. After defining identity types, we shall mainly use informal notation so that our pre-
sentation matches the ordinary style of mathematics. (The type theory literature normally does the
same.) Still, all of the definitions, theorems, proofs, etc. internal to our system can be syntactically
formalized.4

2.1 Identity types (Id−(−,−))
So far, our sole concept of equality is judgmental equality. But this fails to caputure our ordinary
concept of equality, as in the formula ∀x, y ∈ R(x+ y = y + x). Indeed, this is a first-order sentence
and thus should correspond to a well-formed type à la Curry-Howard. By contrast, judgmental
equality, as a relation on the set of all raw terms, determines a rewriting system, i.e., a set of rules
for replacing one raw term with another.
To reason about mathematical equality in our MLDTT, we define our final inductive type, the
(propositional) identity type, as follows.

Id-form
Γ ⊢ A type

Γ, x : A, y : A ⊢ IdA(x, y) type
Id-intro

Γ ⊢ A type

Γ, x : A ⊢ refl(A, x) : IdA(x, x)

Id-elim

Γ, x : A, y : A, p : IdA(x, y) ⊢ C(x, y, p) type
Γ, z : A ⊢ c(z) : C[z, z, refl(A, z)/x, y, p]

Γ, x : A, y : A, p : IdA(x, y) ⊢ J(x.y.p.C, z.c, x, y, p) : C(x, y, p)

Id-comp
Γ, x : A, y : A, p : IdA(x, y) ⊢ C(x, y, p) type Γ, z : A ⊢ c(z) : C[z, z, refl(A, z)/x, y, p]

Γ, x : A ⊢ J(x.y.p.C, z.c, x, x, refl(A, x)) ≡ c[x/z] : C[x, x, refl(A, x)/x, y, p]

Notation. We shall write refla for refl(A, a) when its first argument can easily be inferred.
Remark 2.1.1. Our MLDTT is intensional in that it leaves out both of the following inference rules.

1. (equality reflection rule (ERR))

Γ ⊢ p : IdA(x, y)
Γ ⊢ x ≡ y : A .

4For example, there are ongoing implementations of [25] in the proof assistants Coq and Agda available on GitHub.
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2. (uniqueness of identity proofs (UIP))

ctx(Γ)
Γ ⊢ uip :

∏
A:U

∏
x,y:el(A)

∏
p,q:Idel(A)(x,y)

IdIdel(A)(x,y)(p, q)
.

A Martin-Löf dependent type theory is extensional if it includes ERR. It is a set-level type theory if
it includes UIP.5 In an extensional type theory, propositional equality implies judgmental equality.
(The converse is always true.) In a set-level type theory, for any two well-formed terms, there is at
most one proof that they are propositionally equal. If ERR is assumed, then UIP is provable with
Id-elim.

Now, consider the logical rule Id-elim. Intuitively, this asserts that if we know that

(a) for any x, y : A and p : IdA(x, y), we have a type C(x, y, p) and

(b) whenever x = y and p = refl(A, x), we have a term t of type C(x, x, refl(A, x)),

then we can construct a certain term J of type C(x′, y′, p′) for any x′, y′ : A and p′ : IdA(x, y).
Terminology. Another name for Id-elim is path induction.
Indeed, we can interpret a well-formed type A as a topological space and each inhabitant of IdA(x, y)
as a path in A from the point x to the point y. In this case, we think of the term reflx as the constant
path at the point x.

Moreover, under our propositions-as-types doctrine, we view a path in A from x to y as a proof of
the proposition that x = y.

With the following two rules, we postulate that the universe is closed under the logical constructor
Id.

Γ ⊢ a : U Γ ⊢ b, c : el(a)
Γ ⊢ Îda(b, c) : U

Γ ⊢ a : U Γ ⊢ b, c : el(a)
Γ ⊢ el(Îda(b, c)) ≡ Idel(a)(b, c) type

Notation. We may write x ⇝A y for IdA(x, y), omitting the subscript A when it can be easily
inferred.
The type x ⇝A y can be viewed as the path space of A, which consists of the set of paths in A

equipped with the compact-open topology.

Table 3: Homotopy interpretation of type theory
Type theory Homotopy theory

Type Space
Inhabitant Point

Identity type Path space
Type family Fibration

Dependent sum Total space

5It is easy to prove that UIP is incompatible with the univalence axiom.
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In our propositions-as-types doctrine, we intuitively interpret any type as a certain logical proposi-
tion. Using identity types, we can define an alternative notion of proposition within our MLDTT
as follows.

Definition 2.1.2. A type A is an h-proposition (or a mere proposition) if there is some term of type

is prop(A) :=
∏
x,y:A

x⇝ y.

Not every well-formed type A is necessarily an h-proposition within our MLDTT. It is one exactly
when any two of its inhabitants are propositionally equal. According to our propositions-as-types
doctrine, this means that any two of its proofs are the same. In this case, A is true exactly when it
is inhabited by a single term and false exactly when its inhabitation leads to a contradiction.
As a result, the constructive logic encoded in our MLDTT now has the property that a specific proof
of a proposition P carries no mathematical data other than the fact that P is true. Likewise, in
propositional logic, a proposition is interpreted as nothing more than a truth value.

Aside. Suppose that we treated as propositions exactly those types A such that is prop(A) is
inhabited. Further, suppose that we postulated the rule

Γ ⊢ A type

dnA : is prop(A)→ (¬¬A→ A) ,

called the law of double negation.6 Then the logic encoded in our MLDTT would become classical.
Thus, we could recover classical mathematical reasoning, if desired, at the expense of constructive-
ness.

2.2 Basic properties of (type-theoretic) paths
Lemma 2.2.1 (Path inversion). Let A be a type and let x and y be inhabitants of A (in context
Γ). Then there is some function

inv : (x⇝ y)→ (y ⇝ x)

such that inv(reflz) ≡ reflz for each z : A. For any p : x⇝ y, let p−1 := inv(p).

Proof. By path induction, it suffices to construct a term

inv(reflx) : x⇝ x.

Take inv(reflx) to be reflx.

Lemma 2.2.2 (Path concatenation). Let A be a type and x, y : A. Then there is some function

concat : (x⇝ y)→ (y ⇝ z)→ (x⇝ z)

such that concat(reflx, q) ≡ q for any q : x⇝ z. Let p ∗ q := concat(p, q).

Proof. Again, it suffices to construct, for any z : A, a term

concat(reflx) : (x⇝ z)→ (x⇝ z).
6As it turns out, this is compatible with the univalence axiom, but it would not be if we omitted the antecedent

“is prop(A).” See [25, Theorem 3.2.2].
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Take concat(reflx) to be idmapx⇝z. The fact that concat(reflx, q) ≡ q follows automatically from
Id-comp.

It follows that propositional equality is like a set-theoretic equivalence relation.

Lemma 2.2.3. Let A be a type. Let x, y : A and p : x⇝ y.

(1) Let z, w : A. Let q : y ⇝ z and r : z ⇝ w. Then there is some path

assoc(p, q, r) : (p ∗ q) ∗ r ⇝ p ∗ (q ∗ r).

(2) There exist certain paths

l unit(p) : reflx ∗ p⇝ p

r unit(p) : p ∗ reflx ⇝ p.

(3) There exist certain paths

l inv(p) : p−1 ∗ p⇝ refly
r inv(p) : p ∗ p−1 ⇝ reflx.

Proof. Let us just prove (1) for both (2) and (3) will follow similarly. By path induction, it suffices
to construct a term of type

(reflx ∗ q) ∗ r ⇝ reflx ∗ (q ∗ r)

where q : x⇝ z. Note that (reflx ∗ q) ∗ r ≡ q ∗ r and reflx ∗ (q ∗ r) ≡ q ∗ r due to Lemma 2.2.2. Thus,
by some of our structural rules, we can just choose reflq∗r.

Corollary 2.2.4. Every type has the structure of a fundamental groupoid of a topological space.

Our next result shows that any non-dependent function is continuous in a certain sense.

Lemma 2.2.5 (Functoriality). Any non-dependent function f : A → B preserves paths, i.e., for
any path p : x⇝A y, there is some path apf,p : f(x)⇝B f(y).

Proof. It suffices to construct a term apf,p(reflx) : f(x)⇝B f(x). Choose reflf(x).

Lemma 2.2.6 (Transport). Let P be a type family over A. Let p : x ⇝A y. Then there is some
function

transport(p) : P (x)→ P (y)

such that transport(reflx)(u) ≡ u for any u : P (x). Let p · u := transport(p)(u).

Proof. It suffices to construct a term transport(reflx) : P (x)→ P (x). Choose idmapP (x).

Lemma 2.2.7. Let f :
∏
x:A P (x) and p : x⇝A y. Then there is some path

apdf (p) : p · f(x)⇝P (y) f(y).

Proof. It suffices to construct a term apdf (reflx) : f(x)⇝P (x) f(x). Choose reflf(x).
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As fiber bundles in topology possess the homotopy lifting property, our next lemma leads us to
interpret the dependent sum

∑
x:A P (x) as the total space of a fiber bundle over A.

Lemma 2.2.8 (Path lifting). Let P be a type family over A. Suppose that p : x ⇝A y and that
u : P (x). Then there is some path

pΣ(u) : (x, u)⇝Σx:AP (x) (y, p · u).

Proof. It suffices to construct a term (reflx)Σ(u) : (x, u)⇝ (x, u). Choose refl(x,u).

Lemma 2.2.9. Suppose that x, x′ : A, y : B(x), and y′ : B(x′). Suppose that we have both a path
from (x, y) to (x′, y′) and a path from y′ to z where z : B(x′). Then there is some term of type

IdΣx:AB(x)((x, y), (x′, z)).

Proof. Another easy application of path induction.

As one may expect, if two dependent functions of the same type are propositionally equal, then they
are pointwise propositionally equal.

Lemma 2.2.10. Let f, g :
∏
x:A P (x) where P is a type family over A. Let α : f ⇝ g. Then α

induces a path α(x) : f(x)⇝P (x) g(x) for each x : A. Therefore, we have a function

hApplyA,P :
∏

f,g:Πx:AP (x)

(f ⇝ g)→
(∏
x:A

f(x)⇝ g(x)
)
.

Proof. It suffices to construct a term

hApplyA,P (f, f)(reflf ) :
∏
x:A

f(x)⇝ f(x).

Choose λx.reflf(x).

Definition 2.2.11 (Homotopy). Let f, g :
∏
x:A P (x) where P is a type family over A. A homotopy

from f to g is a term H of type

f ≈ g :=
∏
x:A

f(x)⇝P (x) g(x).

If this type is inhabited, then we say that f and g are homotopic, written as f ∼ g.

As it turns out, if our MLDTT assumes the univalence axiom, then any model of it must sat-
isfy so-called functional extensionality, which ensures that every type-theoretic homotopy induces a
continuous choice of paths px : f(x)⇝ g(x), just as a homotopy in the classical sense.

The following notion corresponds to homotopy equivalence in topology, i.e., an isomorphism in the
homotopy category of Top.

Definition 2.2.12 (Isomorphism). Let f : A→ B. We say that f is a (homotopy) isomorphism
if there is some g : B → A such that f ◦ g ∼ idmapB and g ◦ f ∼ idmapA. To be precise,

iso(f) :=
∑

g:B→A

(idmapB ≈ f ◦ g)× (idmapA ≈ g ◦ f).
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We call such a g a homotopy inverse of f .

Definition 2.2.13. Let B be a type family over A. Define homotopy concatenation as the function

htpy concat :
∏

f,g,h:Π(x:A)B(x)

(f ≈ g)→ (g ≈ h)→ (f ≈ h)

where htpy concat(H,K) := λx.H(x) ∗K(x). We write H •K for htpy concat(H,K).

Lemma 2.2.14. Suppose that f, g : A → B and f ′, g′ : B → C. Suppose that we have inhabitants
H and H ′ of f ≈ g and H ′ : f ′ ≈ g′, respectively. Then f ′ ◦ f ∼ g′ ◦ g.

Proof. The term λa.g′(H(a)) •H ′(f(a)) has type f ′ ◦ f ≈ g′ ◦ g.

Definition 2.2.15 (Contractible type). Given a type A, we say that A is contractible if the type

is contr(A) :=
∑
a:A

∏
x:A

x⇝ a

is inhabited. For any inhabitant (c, C) of is contr(A), we call c a center of contraction for A and
C a contraction of A.

To preserve our topological intuition, we should interpret this as saying that A is contractible exactly
when we can construct a term a : A and a homotopy from λx.x to λx.a.

Example 2.2.16. The unit type is contractible.

Proof. Define f :
∏
x:1 x⇝ ⋆ inductively by f(⋆) := refl⋆. Then (⋆, f) has type is contr(1).

The following result reveals that a type where each inhabitant is potentially non-contractible can
collectively form a contractible type.

Lemma 2.2.17. For any type A and any a : A, the type
∑
x:A x⇝ a is contractible.

Proof. We claim that (a, refla) inhabits is contr(
∑
x:A x ⇝ a). We must show that there is some

path from (x, p) to (a, refla) for any (x, p) :
∑
x:A x ⇝ a. By the path lifting lemma along with

Lemma 2.2.9, it suffices to construct a term q : a ⇝ x such that q · refla and p are propositionally
equal. By path induction, it is easy to show that p · refla and p are propositionally equal. Hence
take q to be p.

The following notion corresponds to the fiber of a point under a continuous map between spaces.

Definition 2.2.18. Let f : A→ B and b : B. The homotopy fiber of b is the type

hFiber(f, b) :=
∑
x:A

f(x)⇝ b.

We can now extend our notion of contractibility to functions.

Definition 2.2.19. We say that a function f : A→ B is contractible if hFiber(f, b) is contractible
for each b : B, i.e., there is some term of type

is contr map(f) :=
∏
y:B

is contr(hFiber(f, y)).

21



2.3 Type-theoretic equivalence
Definition 2.3.1. Consider a function f : A→ B.

1. Let
retr(f) :=

∑
g:B→A

g ◦ f ≈ idmapA .

For any term (g,G) : retr(f), we call g a retraction of f .

2. Let
sec(f) :=

∑
h:B→A

f ◦ h ≈ idmapB .

For any term (h,H) : sec(f), we call h a section of f .

3. We say that f is an equivalence from A to B if we have functions g : B → A and h : B → A

such that g ◦ f ∼ idmapA and f ◦ h ∼ idmapB , i.e., there is some term of type

is equiv(f) := retr(f)× sec(f).

Then the type of equivalences from A to B is precisely

A ≃ B :=
∑

f :A→B

is equiv(f).

If this is inhabited, then we say that A and B are equivalent.

Remark 2.3.2. We have defined logical equivalence and equivalence between types differently.

Example 2.3.3. For any type A, the map idmapA is clearly an equivalence.

Corollary 2.3.4. Let P be a type family over A and p : x ⇝A y. Then transport(p) is an
equivalence from P (x) to P (y).

Proof. An easy application of path induction.

Lemma 2.3.5. Suppose that P and Q are h-propositions and that we have terms f : P → Q and
g : Q→ P . Then P and Q are equivalent.

Proof. It is easy to see that f and g are homotopy inverses of each other.

We now proceed to establish two new ways of logically characterizing is equiv(f).

Lemma 2.3.6. A function f : A → B is an equivalence if and only if it is an isomorphism, i.e.,
iso(f) and is equiv(f) are logically equivalent types.

Proof. The (⇐=) direction is obvious. Conversely, suppose that f is an equivalence. Then we have
a term (g,G) : retr(f) and a term (h,H) : sec(f). For any y : B, we can apply Theorem 1.3.5 to
get a chain of paths

h(y) (g ◦ f)(h(y)) g((f ◦ h)(y)) g(y)G(h(y))−1 apdg(H(y))
.

This shows that we can construct a homotopy K : h ≈ g. It follows that h ◦ f ∼ idmapA, so that h
is a homotopy inverse of f .
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Corollary 2.3.7. Any two contractible types are equivalent. In particular, every contractible type
is equivalent to the unit type.

Corollary 2.3.8. If the types A and B are contractible and f : A→ B, then f is an equivalence.

Proof. It suffices to show that f is an isomorphism. By assumption, we have inhabitants (c, C) and
(c′, C ′) of is contr(A) and is contr(B), respectively. It is easy to check that f ◦ consc ∼ idmapB
and consc ◦f ∼ idmapA.

Theorem 2.3.9. A function f : A → B is an equivalence if and only if it is contractible, i.e.,
is equiv(f) and is contr map(f) are logically equivalent types.

Proof. For the (=⇒) direction (which is much more difficult), see [20, Theorem 6.3.3].
Conversely, suppose that f is contractible. Then for each y : B, we get a term

(h(y),H(y)) : is contr(hFiber(t, y)).

Therefore, we have a term
λy.(h(y),H(y)) :

∏
y:B

hFiber(f, y).

From this we can construct a function h : B → A and a homotopy

H :
∏
y:B

f(h(y))⇝B y.

Now, we also can construct a term of type
∏
x:A h(f(x)) ⇝A x. Indeed, for each x : A, we have a

path
p : f(h(f(x)))⇝B f(x),

so that f(h(f(x))) inhabits hFiber(f, f(x)). Since hFiber(f, f(x)) is contractible, we get a path

q : (h(f(x)), p)⇝
(
x, reflf(x)

)
.

Then pr1(h(f(x)), p) ⇝ pr1((x, reflf(x))) is inhabited due to Lemma 2.2.5. Hence h(f(x)) ⇝ x is
inhabited as well. It follows that h is both a section and a retraction of f . In particular, f is an
equivalence.

Definition 2.3.10. Let P and Q be dependent families over A. A function γ :
∏
x:A P (x)→ Q(x)

is a fiberwise equivalence from P to Q if each γ(x) is an equivalence from P (x) to Q(x).

Theorem 2.3.11 (Voevodsky). Let P and Q be type families over A. Consider a term

τ :
∏
x:A

P (x)→ Q(x)

with the property that

στ := λw.(pr1(w), τ(pr1(w))(pr2(w))) :
∑
x:A

P (x)→
∑
x:A

Q(x)

is an equivalence. Then τ is a fiberwise equivalence.7
7[19, Theorem 2.4.19].
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Functional extensionality
So far, we have intuitively regarded dependent functions as set-theoretic functions, i.e., ordinary
mathematical functions. At this point, however, our deductive system is too weak to prove that
any two dependent functions f and g that are pointwise propositionally equal are themselves propo-
sitionally equal. In this way, they are more like algorithms than ordinary functions. Indeed, two
different algorithms may have the same output on each input. To avoid this issue, we may consider
so-called functional extensionality principles.

Definition 2.3.12.

1. The weak functional extensionality principle (WFE) asserts that for any type family P over
A, we have a term (∏

x:A
is contr(P (x))

)
→ is contr

(∏
x:A

P (x)
)
.8

2. The functional extensionality principle (FE) asserts that for any type family P over A, there
is some term of type ∏

f,g:Πx:AP (x)

is equiv(hApply(f, g)).

In particular, FE asserts that for any two dependent functions f, g :
∏
x:A P (x), if f are g are

homotopic, then they are propositionally equal. From a set-theoretic perspective, this corresponds
to the fact that if two functions f, g : X → Y agree at each point in X, then f = g. From a
topological perspective, it corresponds to the fact that a homotopy between f and g induces a path
between f and g in the mapping space M(X,Y ). In this case, our type-theoretic notion of homotopy
agrees with the classical notion.

Example 2.3.13. To see that functional extensionality is useful, let P be a mere proposition (as in
Definition 2.1.2). We want to show that ¬P is also a mere proposition, i.e., that

∏
x,y:¬P x ⇝ y is

inhabited. To this end, assume FE and let x, y : P → 0. We must construct a term of type x⇝ y.
Note that x(z) ⇝ y(z) is inhabited for any z : P by virtue of 0-elim. Thus, we get a term of type
Πz:Px(z)⇝ y(z). By FE, it follows that x⇝ y is inhabited, as desired.

It turns out that, despite our terminology, WFE is logically at least as strong as FE. Before proving
this, we state a few intermediate results.

Whereas the axiom of choice is not provable in ZF, its type-theoretic formulation à la propositions-
as-types is easily derivable in our MLDTT.

Theorem 2.3.14 (Axiom of choice). Let P be a type family over A. Also, for each x : A, let
C(x) be a type family over P (x). Then we have a term

ac :

∏
x:A

∑
y:P (x)

C(x, y)

→
 ∑
s:Πx:AP (x)

∏
x:A

C(x, s(x))

.9
8This corresponds to the fact that any product of contractible spaces is contractible in classical homotopy theory.
9This is called the axiom of choice because it is a direct translation of the set-theoretic axiom of choice under the

Curry-Howard correspondence. Despite this formal similarity, the set-theoretic version is much stronger in FOL than
the type-theoretic version is in our deductive system. In fact, a suitably strong type-theoretic version is not derivable
in our MLDTT.
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Proof. Take ac to be the term λh.(λx. pr1(h(x)), λx. pr2(h(x))).

Under the propositions-as-types doctrine, the following result states that we can always switch the
order of bounded quantifiers in a proposition of the form ∀x∃yC(x, y).

Theorem 2.3.15. Assume WFE. Then ac is an equivalence.10

Corollary 2.3.16. Assume WFE . Let P be a type family over A and f :
∏
x:A P (x). Then∑

g:Πx:AP (x)

g ≈ f

is contractible.

Proof. By Lemma 2.2.17, we know that the type
∑
y:P (x) y ⇝ f(x) is contractible for each x : A.

By WFE, it follows that ∏
x:A

∑
y:P (x)

y ⇝ f(x)

is also contractible. It is easy to see that any type that is equivalent (hence isomorphic) to a
contractible type is contractible. Thus, it follows from Theorem 2.3.15 that

∑
g:Πx:AP (x) g ≈ f is

contractible.

Theorem 2.3.17. If WFE is derivable in our MLDTT, then so is FE.

Proof. Assume WFE . Let P be a type family over A and f :
∏
x:A P (x). We want to show that∏

g:Πx:AP (x)

is equiv(hApply(f, g))

is inhabited.
Consider the function

λg. hApplyA,P (f, g) :
∏
x:A

P (x)→
(

(f ⇝ g)→
(∏
x:A

f(x)⇝ g(x)
))

.

By Theorem 2.3.11, it suffices to show that

σλg. hApplyA,P (f,g) :

 ∑
g:
∏

x:A
P (x)

f ⇝ g

→ ∑
g:
∏

x:A
P (x)

f ≈ g

is an equivalence. Note that Lemma 2.2.17 and Corollary 2.3.16 imply that the “domain” type and
the “codomain” type here are contractible, respectively. Therefore, σλg. hApplyA,P (f,g) is an equivalence
by Corollary 2.3.8.

The derivability of WFE in our system is useful for proving many inferences about propositional
equality of functions. The next two results are small examples of this.

Example 2.3.18. Assume WFE. For any type family P over 0, we have that
∏
x:0 P (x) is con-

tractible.
10[19, Lemma 2.5.6]. This relies on Π-η.
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Proof. By induction, there is some dependent function f :
∏
x:0 P (x). For any g :

∏
x:0 P (x), another

use of induction shows that f ∼ g. By FE, it follows that f ⇝ g is inhabited. Therefore,
∏
x:0 P (x)

is contractible, with center of contraction f .

Example 2.3.19. Assume WFE. Let B be a type family over A. Suppose that for each x : A, the
type B(x) is an h-proposition. Then

∏
x:AB(x) is an h-proposition.

Proof. Let f, g :
∏
x:AB(x). For any x : A, we see that f(x) and g(x) are propositionally equal. By

FE, it follows that f and g are propositionally equal.

Corollary 2.3.20. Assume WFE. For any function f : A→ B, the type

is equiv(f) ≃ is contr map(f)

is inhabited.

Proof. By Lemma 2.3.5 along with Theorem 2.3.9, it suffices to show that both is equiv(f) and
is contr map(f) are h-propositions. The fact that the former is an h-proposition is precisely [25,
Theorem 4.3.2]. Moreover, [25, Lemma 3.1..4] states that is contr(E) is an h-proposition for any
type E. By Example 2.3.19, it follows that is contr map(f) is an h-proposition, as desired.

Remark 2.3.21. By contrast, even if WFE holds, it is not the case that for any function f : A→ B,
iso(f) ≃ is equiv(f). Indeed, iso(f) need not be an h-proposition [25, p. 77].

2.4 Univalence
Lemma 2.4.1. Let B be a type family over A. For any x, y : A, there is some function

idtoequivx:A;B(x)(x, y) : (x⇝ y)→ (B(x) ≃ B(y)).

Proof. By path induction, it suffices to construct a term idtoequivx,y(reflx) : B(x) ≃ B(x). We
can choose idmapB(x) thanks to Example 2.3.3.

Definition 2.4.2 (Univalence axiom (Univ)). For any A,B : U, the function

idtoequivx:U;el(x)(A,B) : (A⇝U B)→ (el(A) ≃ el(B))

is an equivalence. Formally, we postulate the logical rule

⊢ univ :
∏
x,y:U

is equiv
(

idtoequivx:U;el(x)(x, y)
)
.

In general, we say that a type family B over A is univalent if the function idtoequivx:A;B(x)(a, b)
is an equivalence for any a, b : A. Therefore, the univalence axiom states that the type family
x : U ⊢ el(x) type is univalent. In particular, there is some homotopy inverse

idtoequiv(A,B)−1 : (el(A) ≃ el(B))→ (A⇝U B).

Informally, this means that whenever two types are equivalent, they are propositionally equal.
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Theorem 2.4.3. Let A and B be types. Then Univ implies that there is some term of type∏
f,g:A→B

(f ≈ g)→ (f ⇝ g).11

Corollary 2.4.4 (Voevodsky). Univ =⇒ WFE =⇒ FE.

Proof. In light of Theorem 2.3.17, it just remains to prove that if Univ is derivable, then so is WFE .

Assume Univ. Suppose that P is a type family over A and that we have a term of type∏
x:A

is contr(P (x)).

Since U is closed under all logical constructors, we may assume that A as well as each P (x) is a
small type. We must show that

∏
x:A P (x) is contractible. Define F : A → U as the constant map

λx.1̂. Since both P (x) and 1 are contractible for any x : A, we have that P (x) ≃ 1 is inhabited. By
Univ, it follows that P̂ (x)⇝U 1̂. By path induction, we see that the type

(∏̂
x:A

P̂ (x)
)
⇝U

∏̂
x:A

1̂︷ ︸︸ ︷
F (x)


is inhabited, so that ∏

x:A
P (x) ≃

∏
x:A

el(F (x))

is also inhabited.

Hence it suffices to show that the righthand type is contractible. But any function f : A → 1 is
homotopic to λx.⋆. Theorem 2.4.3 thus shows that f and λx.⋆ are, in fact, propositionally equal. It
follows that

∏
x:A F (x) is contractible, with center of contraction λx.⋆.

For a concrete application of Univ to algebra within Martin-Löf dependent type theory, see Section B.

3 Categorical semantics
Any variant of CDTT is purely a formal language. To give its well-formed expressions meanings,
we interpret them as certain mathematical objects. Specifically, we define an interpretation of them
as certain structures within a suitable category, thereby providing the CDTT with a categorical
semantics.

This section develops those notions from categorical semantics which Section 5 will rely on. First of
all, it is worth summarizing our set-theoretic foundations for category theory.

Definition 3.0.1. A Grothendieck universe is a transitive set U such that

(i) N ∈ U ,

(ii) x ∈ U =⇒ P(x) ∈ U , and
11[19, Lemma 2.7.6].
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(iii) for any I ∈ U and function u : I → U ,
⋃
i∈I u(i) ∈ U .

By a combination of (ii) and (iii), any subset of an element of U belongs to U . As a result, U is also
closed under intersections, unions, and cartesian products.

Example 3.0.2. For any (strongly) inaccessible cardinal κ, the κ-th stage Vκ of the rank hierarchy
is a Grothendieck universe.

In fact, any Grothendieck universe U satisfies ZFC. Thus, by Gödel’s incompleteness theorems, it is
impossible to prove the existence of a Grothendieck universe in ZFC. This leads us to the first-order
axiom of universes:

For every set s, there exists a Grothendieck universe U such that s ∈ U.

This guarantees that every class definable from U -small sets for some Grothendieck universe U is
U ′-small for some larger universe U ′.

Conversely, it is provable in ZFC that any Grothendieck universe U has the form Vκ for some
inaccessible cardinal κ.12 By Example 3.0.2, it follows that there exists a Grothendieck universe if
and only if there exists an inaccessible cardinal. This means that the axiom of universes is equivalent
to the large cardinal axiom that there exist arbitrarily large inaccessible cardinals.

For us, category theory will be formulated in the extension of ZFC by this axiom (which, of course,
has not been proven inconsistent). Moreover, the category Set will consist of all U -small sets for
a sufficiently large Grothendieck universe U . In particular, this means that if C is a locally small
category, then we can pass to a universe U ′ larger than U via the axiom of universes so that C itself
is a U ′-small category. For this reason, we may regard, for example, sSet as a small category.
Remark 3.0.3. Most of our results, however, do hold in ZFC.

Remark 3.0.4. Throughout this section, all categories are assumed to be locally small.

3.1 The syntactic category
To begin with, we build a category directly out of our MLDTT. In Section 3.2, we shall see this
category determines the canonical semantics of CDTT.
Notation. Let T denote our MLDTT (without Univ).

Definition 3.1.1 (Context morphism). Let Γ and ∆ := x1 : A1, . . . , xn : An be well-formed
contexts in T. Further, let t1, . . . , tn denote 0-expressions.

• Recalling Definition 1.1.8, suppose that the following n judgments are derivable in T:

Γ ⊢ t1 : A1 type

Γ ⊢ t2 : A2[t1/x1] type

...
Γ ⊢ tn : An[t1/x1][t2/x2] · · · [tn−1/xn−1] type .

Then the tuple f := (t1, . . . , tn) is a context morphism from Γ to ∆, written as f : Γ � ∆.
12See [27].
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• Let f := (t1, . . . , tn) and g := (s1, . . . , sn) be context morphisms from Γ to ∆. Suppose that
the following n judgments are derivable in T:

Γ ⊢ t1 ≡ s1 : A1

Γ ⊢ t2 ≡ s2 : A2[t1/x1]
...

Γ ⊢ tn ≡ sn : An[t1/x1][t2/x2] · · · [tn−1/xn−1].

Then f and g are judgmentally equal context morphisms from Γ to ∆, written as
f ≡ g : Γ � ∆.

Notation. K[f/∆] := K[t1/x1][t2/x2] · · · [tn/xn].

Example 3.1.2 (Display map). Suppose that ctx(Γ, x : A) is derivable in T where
Γ := x1 : A1, . . . , xn : An. Then each of

Γ, x : A ⊢ x1 : A1 type

Γ, x : A ⊢ x2 : A2 type

...
Γ, x : A ⊢ xn : An type

is derivable in T due to the structural rule Vble. Thus, pA := (x1, . . . , xn) is a context morphism
from Γ, x : A to Γ, called the display map of A.
From a syntactic perspective, this represents a type family A over the types appearing in Γ. From
a topological perspective, it represents a fiber bundle over Γ.

Definition 3.1.3 (Syntactic category). Define the syntactic category C (T) of T as follows.

• Let Ob C (T) be the quotient of the set of all well-formed contexts in T by the equivalence
relation ∼ where

Γ ∼ ∆ ⇐⇒ Γ ≡ ∆ ctx is derivable in T.

• For any [Γ], [∆] ∈ Ob C (T), let C (T)(Γ,∆) be the quotient of the set of all context morphisms
from Γ to ∆ by the equivalence relation ∼′ where

[f ]∼′[g] ⇐⇒ f ≡ g : Γ � ∆ is derivable in T.

This is well-defined because of the derived rule

Γ1 ≡ Γ2 Γ3 ≡ Γ4 f : Γ1 � Γ3

f : Γ2 � Γ4 .

• For any two (equivalence classes of) context morphisms f : Γ � ∆ and g := (s1, . . . , sn) :
∆ � Θ, let

g ◦ f = (s1[f/∆], . . . , sn[f/∆]).

It is straightforward yet tedious to verify that the operation ◦ is well-defined and associative and
that for any well-formed context Γ := x1 : A1, . . . , xn : An, the morphism (x1, . . . , xn) is well-defined
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and constitutes the identity morphism idΓ for (the equivalence class of) Γ. It follows that C (T) is,
indeed, a category.

Note 3.1.4.

(1) Let Γ := x1 : A1, . . . , xn : An. We have a one-to-one correspondence between typing dec-
larations Γ ⊢ a : A and sections of the display map pA given by mapping Γ ⊢ a : A to
(x1, . . . , xn, a).

(2) The set Ob C (T) is N-graded in that there is a natural bijection Ob C (T) ∼=
∐
n∈N Cn where

Cn denotes the quotient of the set of all well-formed contexts in T of length n by ∼. Thus,
Ob C (T) may be viewed as a rooted tree with the following properties.

(a) Its root is precisely the empty context.
(b) Its n-th level is precisely Cn.
(c) For any node Γ, x : A of degree n ≥ 1, its parent is precisely Γ.

In particular, the empty context is the terminal object of C (T) as well as the unique object of
degree zero.

Let f := (t1, . . . , tn) : ∆ � Γ be a morphism in C (T). Suppose that both ctx(∆, y : A[f/Γ]) and
ctx(Γ, x : A) are derivable in T. Note that

q(f,A) := (t1, . . . , tn, y)

is a morphism from ∆, y : A[f/Γ] to Γ, x : A because ∆, y : A[f/Γ] ⊢ y : A[f/Γ] is derivable in T by
the structural rule Vble.

Lemma 3.1.5. The commutative square

∆, y : A[f/Γ] Γ, x : A

∆ Γ

pA[f/Γ]

q(f,A)

pA

f

(1)

is a pullback in C (T).

Proof. Suppose that

Θ

∆, y : A[f/Γ] Γ, x : A

∆ Γ

g1

g2

pA[f/Γ]

q(f,A)

pA

f

commutes in C (T). We must show that there exists a unique morphism g : Θ→ ∆, y : A[f/Γ] that
fits into this diagram. Since pA ◦ g2 = f ◦ g1, we see that g2 = (f ◦ g1, τ) for some term expression τ
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such that Θ ⊢ τ : A[f ◦ g1/Γ] is derivable in T. But A[f ◦ g1/Γ] = A[f/Γ][g1/∆], so that g := (g1, τ)
is a morphism Θ→ ∆, y : A[f/Γ]. This satisfies

pA[f/Γ] ◦ g = g1

q(f,A) ◦ g = (f ◦ g1, τ) (∗)
= g2,

and thus g fits into our diagram. To prove that g is unique, let g̃ be any other such morphism
Θ → ∆, y : A[f/Γ]. As pA[f/Γ] ◦ g̃ = g1, we have that g̃ is of the form (g1, τ̃) for some τ̃ such that
θ ⊢ τ̃ : A[g1/∆] is derivable in T. Moreover, using (∗), we have that

(f ◦ g1, τ) = g2

= q(f,A) ◦ ĝ
= (f, y) ◦ (g1, τ̃)
= (f ◦ g1, τ̃).

This implies that Θ ⊢ τ ≡ τ̃ : A[f ◦ g1/Γ]︸ ︷︷ ︸
A[f/Γ][g1/∆]

is derivable in T. This means that

g̃ = (g1, τ̃) = (g1, τ) = g,

as required.

3.2 Contextual categories
There are at least three reasons for looking at contextual categories for our categorical semantics.
First, the class of objects in a contextual category has a tree-like structures, just as the set of well-
formed contexts of our MLDTT. Second, contextual categories are suitable for interpreting type
equality judgments of our MLDTT as their objects can be compared for a kind of equality, not
just for isomorphism. Third, they possess a class of distinguished pullbacks, which must be strictly
functorial and must commute strictly with logical constructors such as dependent products, thereby
resembling syntactic substitution.

Overall, the notion of a contextual category is designed to abstract the key structure from Defini-
tion 3.1.3.

Definition 3.2.1 (Contextual category). A contextual category C is a category such that

(i) C comes equipped with a terminal object 1,

(ii) Ob C is N-graded, i.e., is of the form
∐
n∈N Obn C ,

(iii) Ob0(C ) = {1},

(iv) for each n, C comes equipped with a (class) function ftn : Obn+1 C → Obn C ,

(v) for each X ∈ Obn+1 C , C comes equipped with a morphism pX : X → ftn(X) (called the
display map of X),
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(vi) for each X ∈ Obn+1 C and map f : Y → ftn(X), C comes equipped with an object f∗X and
a morphism q(f,X) such that ft(f∗X) = Y and

f∗X X

Y ftn(X)

pf∗X

q(f,X)

pX

f

is a pullback square (called the canonical pullback of X along f), and

(vii) every canonical pullback is strictly functorial in the sense that

id∗
ftn(X) X = X

q(idftn X , X) = idX
(fg)∗

X = g∗(f∗X)
q(fg,X) = q(f,X)q(g, f∗X)

for any X ∈ Obn+1 C and morphisms f : Y → ftn(X) and g : Z → Y .

Remark 3.2.2. To motivate condition (vii), let Γ ⊢ A type be derivable in T and let f : ∆→ Γ and
g : Θ→ ∆ be context morphisms in T. On the one hand, it is easy to check that

A[f/Γ][g/∆] = A[fg/Γ]

as strings. On the other hand, consider the commutative diagram

(fg)∗
X

g∗(f∗X) f∗X X

ft(g∗(f∗X)) ft(f∗X) ft(X)

γ

p(fg)∗X

q(fg,X)

pg∗(f∗X)

q(g,f∗X)

pf∗X

q(f,X)

pX

g f

.

If (vii) is omitted, then the induced map γ, though an isomorphism in C , need not be the identity
morphism. Therefore, without strict functoriality, interpreting typehood judgments of the form
∆ ⊢ A[f/Γ] as canonical pullbacks in C may be unsound. Yet, we want a contextual category to
carry a structure similar to that of the syntactic category of T, in which ∆ ⊢ A[f/Γ] is correctly
interpreted as the canonical pullback (1).

Example 3.2.3. The category Set of sets carries the data of a contextual category D . Indeed,
define the grading of Ob D by mutual recursion with a function δ : Ob D → Set as follows.

• Ob0 D ≡ {∅}, and δ(∅) ≡ {∅}.

• The class Obn+1 D consists of pairs (X,A) where X ∈ Obn D and A : δ(X) → Set, and
δ(X,A) ≡ {(x, a) | x ∈ δ(X), a ∈ A(x)}.

32



Let HomD(X,Y ) consist of all set-theoretic functions δ(X) → δ(Y ). The remaining data of a
contextual category are given as follows. For any (X,A) ∈ Obn+1 D and f ∈ HomD(Y,X),

• ft(X,A) ≡ X.

• p(X,A)(x, a) ≡ x.

• f∗(X,A) ≡ (Y,A ◦ f), and q(f, (X,A))(x, a) ≡ (f(x), a).

Let g : δ(Y ) → δ(X) be any set-theoretic function. Define A : δ(X) → Set by A(x) = g−1(x). It
is easy to check that the function ψ : δ(Y ) ∼= δ(X,A) given by y 7→ (g(y), y) is bijective and that
p(X,A) ◦ ψ = g. Thus, every map in D is isomorphic to a canonical projection. In an arbitrary
contextual category, then, we may think of canonical projections as resembling set maps.

Note 3.2.4 (Binary products). Let C be a contextual category. For any object X in C , we can
form the pullback square

p∗
XX X

X ft(X)

pp∗
X

q(pX ,X)

pX

pX

.

Then p∗
XX is the product X ×X in C with projection map pp∗

X
.

Note 3.2.5 (Pullback section). Suppose that s is a section of pX . Then, by the universal property
of pullback squares, there exists a unique morphism f∗s : Y → f∗X such that

Y

f∗X X

Y ft(X)

f∗s

idY

s◦f

pf∗X

q(f,X)

pX

f

s

commutes. This means that f∗s is a section of pf∗X .

Notation.

1. For any X ∈ Obn C , we may write (X,A) for any object Y ∈ Obn+1 C such that ft(Y ) = X.
Also, we may write (X,A,B) for any object Y ∈ Obn+2 C such that ft(Y ) = (X,A).

2. For any such X and any map f : Y → X in C , we may write (Y, f∗A) for the canonical
pullback f∗(X,A).

3. For any such X and f , we may write pA for the display map p(X,A) : (X,A)→ X and q(f,A)
for the map q(f,X,A).

4. For any such X, we may write pA,B for the composite of display maps pA◦pB : (X,A,B)→ X.

5. For any such X, we may write sA for any section of pA.
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6. For any commutative diagram of the form

Y

f∗X X

Y ft(X)

g

h

pf∗X

q(f,X)

pX

f

,

we may write ⟨f∗X, g, h⟩ for the unique morphism Y → f∗X fitting into it.

Using the setting of contextual categories, let us begin formally defining a notion of truth of a
judgment in T. Let C be a contextual category. We want C to carry a structure for each logical
constructor in T as well as a structure for the universe type in T. Defining such a structure on C

amounts to

(a) translating the main logical rules (except congruence rules) governing the given constructor or
universe into the language of contextual categories and

(b) stipulating a so-called stability condition so that canonical pullbacks commute strictly with
the given constructor or universe.

In the interest of space, we describe here the structures for just Π, 0, Id, and U. For the other logical
constructors, see [14, Appendix B].

A Π-type structure on C consists of the following data:

(i) for each (Γ, A,B) ∈ Obn+2 C , an object (Γ,Π(A,B)) ∈ Obn+1 C ;

(ii) for each such (Γ, A,B) and each section b of pB , a section λ(b) of pΠ(A,B);

(iii) for each such (Γ, A,B), each section k of pΠ(A,B), and each section a of pA, a section app(k, a)
of the composite pA,B such that pB ◦ app(k, a) = a,

(iv) app(λ(b), a) = b ◦ a, and

(v) for each map f : Γ′ → Γ in C , we have that

f∗(Γ,Π(A,B)) = (Γ′,Π(f∗A, f∗B))
f∗λ(b) = λ(f∗b)

f∗app(k, a) = app(f∗k, f∗a).

Remark 3.2.6. We have left out the data for Π-η for simplicity. Nevertheless, they are present in
every model of T studied in Section 5.

A 0-type structure on C consists of the following data:

(i) for each Γ ∈ Ob C , an object (Γ,0Γ);

(ii) for each object (Γ,0Γ, A), a section ind0(A) of pA such that
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(iii) for each f : Γ′ → Γ, we have that

f∗(Γ,0Γ) = (Γ′,0Γ′)
f∗(ind0(A)) = ind0(f∗A).

A Id-type structure on C consists of the following data:

(i) for any (Γ, A) ∈ Obn+1 C and sections a and b of pA, an object (Γ, A, p∗
AA, IdA);

(ii) for each such (Γ, A), a morphism reflA : (Γ, A)→ (Γ, A, p∗
AA, IdA) such that pIdA

◦ reflA = ∆A;

(iii) for each (Γ, A, p∗
AA, IdA, B) ∈ Obn+4 C and map d : (Γ, A) → (Γ, A, p∗

AA, IdA, B) satisfying
pB ◦ d = reflA, a section JB,d of pB such that JB,d ◦ reflA = d and

(iv) for each f : Γ′ → Γ, we have that

f∗(Γ, A, p∗
AA, IdA) =

(
Γ′, f∗A, (pf∗A)∗(f∗A), Idf∗A

)
f∗reflA = reflf∗A

f∗JB,d = Jf∗B,f∗d.

Note 3.2.7.

1. Consider the commutative diagram

(Γ, A)

(Γ, A,∆∗
AIdA) (Γ, A, p∗

AA, IdA)

(Γ, A) (Γ, A, p∗
AA)

reflA

∆A

where ∆A stands for the diagonal morphism ∆(Γ,A). Note that the dashed arrow〈
(Γ, A,∆∗

AIdA), id(Γ,A), reflA
〉

is a section of p∆∗
A

IdA
.

2. Consider the pullback square

(Γ, A, refl∗
AB) (Γ, A, p∗

AA, IdA, B)

(Γ, A) (Γ, A, p∗
AA, IdA)reflA

.

Then for any section s of prefl∗
A
B , we have that pB ◦ q(reflA, B) ◦ s︸ ︷︷ ︸

d

= reflA. Thus, d yields a

distinguished section JB,d.
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A U-type structure on C is a distinguished object (U, el) ∈ Ob2 C that is closed under each type
structure on C . For example, it is closed under Π-types in the sense that

(i) for any two maps a : Γ → U and b : (Γ, a∗el) → U, C comes equipped with a morphism
Π̂(a, b) : Γ→ U such that

(ii)
(

Γ, Π̂(a, b)∗el
)

= (Γ,Π(a∗el, b∗el)) and

(iii) for each f : Γ′ → Γ, we have that

Π̂(a, b) ◦ f = Π̂(a ◦ f, b ◦ q(f, a∗el)).

Notation. Consider the diagrams

(Γ, !∗ΓU) U (Γ, (q(!Γ,U) ◦ s)∗el, !∗U) U

Γ 1 (Γ, (q(!Γ,U) ◦ s)∗el) 1!Γ

s

!

s̃

where both s and s̃ denote sections. We shall refer to the composite maps q ◦ s : Γ → U and
q ◦ s̃ : (Γ, (q(!Γ,U) ◦ s)∗el)→ U as υs,Γ and υs̃,s,Γ, respectively.

Definition 3.2.8 (T-structure). A T-structure is a contextual category equipped with a structure
for each logical constructor in T and a structure for the universe type in T.

Let C be a T-structure. We proceed to define a partial function J−K (called an interpretation
function) on the class of all judgments in T such that J−K has values of the forms

Jctx(Γ)K = X, X ∈ Ob C

JΓ ⊢ C typeK = pA, (X,A) ∈ Ob C

JΓ ⊢ c : CK = s, pA ◦ s = idX .

Intuitively, this means that

• objects in C represent well-formed contexts in T,

• display maps in C represent well-formed types, and

• sections of display maps represent inhabitants of well-formed types.

Our motivation for interpreting typing declarations as sections of display maps is precisely part (1)
of Note 3.1.4.
Specifically, J−K is defined, in part, via mutual recursion as follows.13

Well-formed contexts

Jctx(ϵ)K = 1

Jctx(Γ)K = X JΓ ⊢ C typeK = pA

Jctx(Γ, x : C)K = (X,A)
(when x /∈ FV(Γ))

13Our definition is an adaptation and extension of [16, Section 6.4].
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Typing declarations

Jctx(Γ)K = X JΓ ⊢ C typeK = pA
JΓ, x : C ⊢ C ′ typeK = p(pA)∗A

JΓ, x : C ⊢ x : C ′K =
〈
(X,A, p∗

AA), id(X,A), id(X,A)
〉

Jctx(Γ)K = X JΓ ⊢ C1 typeK = pA JΓ, x : C1 ⊢ C2 typeK = p(X,A,B)
JΓ, x : C1, x

′ : C2 ⊢ C3 typeK = p(pB,A)∗A

JΓ, x : C1, x
′ : C2 ⊢ x : C3K =

〈(
X,A,B, (pA,B)∗

A
)
, id(X,A,B), pB

〉
Dependent products

JΓ ⊢ C typeK = p(X,A) JΓ, x : C ⊢ C ′(x) typeK = p(X,A,B)

JΓ ⊢ Πx:CC
′(x) typeK = pΠ(A,B)

JΓ ⊢ C typeK = p(X,A) JΓ, x : C ⊢ C ′(x) typeK = p(X,A,B)
JΓ, x : C ⊢ c′(x) : C ′(x)K = sB

JΓ ⊢ λ(x : C).c′(x) : Πx:CC
′(x)K = λ(sB)

JΓ ⊢ C typeK = p(X,A) JΓ, x : C ⊢ C ′(x) typeK = p(X,A,B) JΓ ⊢ k : Πx:CC
′(x)K = sΠ(A,B)

JΓ ⊢ a : CK = sA

JΓ ⊢ app(k, a) : C ′[a/x]K =
〈
(X, s∗

AB), idX , app(sΠ(A,B), sA)
〉

Zero type

Jctx(Γ)K = X

JΓ ⊢ 0 typeK = p0X

JΓ, x : 0 ⊢ C(x) typeK = p(X,0X ,A) JΓ ⊢ a : 0K = s0X

JΓ ⊢ ind0(x.C, a) : C[a/x]K =
〈(
X, s∗

0X
A
)
, idX , ind0(A) ◦ s0X

〉
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Identity types

JΓ ⊢ C typeK = p(X,A)

JΓ, x : C, y : C ⊢ IdC(x, y) typeK = p(X,A,p∗
A
A,IdA)

JΓ ⊢ C typeK = p(X,A)

JΓ, x : C ⊢ refl(C, x) : IdC(x, x)K =
〈
(X,A,∆∗

AIdA), id(X,A), reflA
〉

JΓ, x : C, y : C, p : IdC(x, y) ⊢ C ′(x, y, p) typeK = p(X,A,p∗
A
A,IdA,B)

JΓ, z : C ⊢ c : C ′[z, z, refl(C, z)/x, y, p]K = srefl∗
A
B

JΓ, x : A, y : A, p : IdC(x, y) ⊢ J(z.c, x, y, p) : C ′(x, y, p)K = JB,q(reflA,B)◦srefl∗
A

B

Universe type

J ⊢ U typeK = ! : U→ 1

Jx : U ⊢ el(x) typeK = pel

JΓ ⊢ a : UK = s!∗
X

U JΓ, x : el(a) ⊢ b(x) : UK = s!∗
υ∗

s!∗
X

U,X
elU

r
Γ ⊢ Π̂(a, x.b) : U

z
=
〈

(X, !∗XU), idX , Π̂(υ, υ)
〉

...

Due to its hideous form, we ought to describe the map S := s!∗
υ∗

s!∗
X

U,X
elU explicitly:

(X, !∗U) U
(
X, υ∗

s!∗
X

U,X
el
)

(U, el) !∗
(
X, υ∗

s!∗
X

U,X
el
)

U

X 1 X U
(
X, υ∗

s!∗
X

U,X
el
)

1

q

s!∗
X

U

q◦s!∗
X

U

S

The reason that we forego a separate group of semantic rules for typehood is that these correspond
to the formation rules for 0, 1, 2, and U, i.e., our four non-dependent types. In the interest of space,
we have omitted any rule defining J−K for Σ-types, the unit type, or the Boolean type.

Notation. If φ is a judgment in T, then the notation JφK✓ means that J−K or an extension of it is
defined at φ.

Definition 3.2.9 (Model of type theory). Let C be a T-structure and let φ be a judgment in T.
We say that C satisfies φ or φ is true in C , written as C |= φ, according to the following conditions.

• C |= ctx(Γ) if and only if Jctx(Γ)K✓.

• C |= Γ ⊢ C type if and only if JΓ ⊢ C typeK✓.
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• C |= Γ ⊢ c : C if and only if JΓ ⊢ c : CK✓.

• C |= Γ ≡ Γ′ ctx if and only if Jctx(Γ)K = Jctx(Γ′)K.

• C |= Γ ⊢ C ≡ C ′ type if and only if JΓ ⊢ C typeK = JΓ ⊢ C ′ typeK.

• C |= Γ ⊢ t ≡ t′ : C if and only if JΓ ⊢ t : CK = JΓ ⊢ t′ : CK

where JφK = Jφ′K means that JφK and Jφ′K are defined and equal. We say that a T-structure C

models T if every theorem of T is satisfied by C .

Example 3.2.10 (Tautological model). The syntactic category C (T) is clearly a T-structure.
By its design, for any judgment φ in T, C (T) satisfies φ if and only if φ is a theorem of T.

Theorem 3.2.11 (Completeness). For any judgment φ in T, if φ is satisfied by every T-structure,
then φ is a theorem of T.

Proof. If φ is satisfied by every T-structure, then it is satisfied in particular by C (T), which only
satisfies theorems of T.

Definition 3.2.12. Let C and D be contextual categories. A contextual functor F : C → D is a
functor C → D that preserves the structure of a contextual category on the nose, i.e.,

(i) if Γ is the parent of Γ′, then F (Γ) is the parent of F (Γ′),

(ii) F (1C ) = 1D ,

(iii) F (pΓ) = pF (Γ) for any Γ ∈ Obn+1 C ,

(iv) F (f∗Γ) = F (f)∗(F (Γ)) for any f : Γ′ → Γ, and

(v) F (q(f,Γ)) = q(F (f), F (Γ)).

Likewise, if both C and D are T-structures, then a contextual functor F : C → D is a logical
contextual functor if it preserves all of the logical structures on the nose.

For each T-structure C , the function J−K induces a functor

J−KC : C (T)→ C

x1 : C1, . . . , xn : Cn 7→ (1, X1, . . . , Xn), Jx1 : C1, . . . xi−1 : Ci−1 ⊢ CiK = pXi

Γ (t1,...,tn)−−−−−−→ x1 : C1, . . . , xn : Cn 7→ JΓKC τ−→ (1, X1, . . . , Xn),

where the morphism τ is defined as follows.

(Γ, X1) (Γ, X1) (Γ, Xi) (Γ, X1, . . . , Xi)

Γ Γ Γ (Γ, X1, . . . , Xi−1)

Γ (Γ, Xn) (Γ, X1, . . . , Xn) (X1, . . . , Xn)

Γ 1

pX1

idΓ

q(idΓ,X1)

⌟
t1 pXi

q(ti−2,Xi−1)◦ti−1

q(q(ti−2,Xi−1)◦ti−1,Xi)

ti

⌟

⌟
tn q(q(tn−2,Xn−1)◦tn−1,Xn)

τ
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Conjecture 3.2.13 (Initiality of syntax). If C is a T-structure, then J−KC is a logical contextual
functor C (T)→ C . Moreover, it is unique.

Informally, this means that every T-structure correctly interprets the syntax of T.

We shall assume that Conjecture 3.2.13 is true. Most, but not all, type theorists accept that it
is a straightforward adaptation of the Correctness Theorem in [24], which proves the conjecture
for a type theory smaller than ours (called the Calculus of Constructions).14 If we do not assume
Conjecture 3.2.13, then the soundness of the semantics of our MLDTT is left unverified.15 In this
case, proving that a contextual category (such as sSet) has suitable logical structure is insufficient
to prove that it correctly interprets the syntax.

We are now in position to state a crucial consequence of Conjecture 3.2.13 (whose counterpart in
classical FOL, by contrast, holds easily).

Theorem 3.2.14 (Soundness). For any judgment φ of T, if φ is a theorem of T, then φ is satisfied
by every T-structure. Hence every T-structure is a model for T.

We say that T is consistent if no judgment of the form ⊢ a : 0 is derivable in T. Otherwise, we say
that T is inconsistent.

Corollary 3.2.15 (Consistency). T is consistent if and only if it has a model in which the display
map p01 has no section.

Proof. For the forward direction, simply observe that if T is consistent, then C (T) is a model of it
and contains no section of p01 . The backward direction follows easily from Theorem 3.2.14 (just as
it does for classical FOL).

Before moving on, let us formulate the univalence axiom in any sufficiently structured contextual
category.

Let C be a T-structure and let Γ be an object in C . Since∏
x,y:U

is equiv
(

idtoequivx:U;el(x)(x, y)
)

is a closed type in T, we can find, by virtue of our existing semantics, a certain object (1,Π(Au, Bu)) ∈
Ob1 C such that

u

v ⊢
∏
x,y:U

is equiv
(

idtoequivx:U;el(x)(x, y)
)

type

}

~ = pΠ(Au,Bu).

Note that C satisfies a typing declaration of the form

⊢ τ :
∏
x,y:U

is equiv
(

idtoequivx:U;el(x)(x, y)
)

if and only if J−K maps this judgment to a section of pΠ(Au,Bu). Therefore, we make the following
definition.

14Currently, there is a communal project called the Initiality Project, hosted on nLab, that aims to rigorously
establish the initiality of C (T).

15Note, however, that [11, Section 3.5] briefly sketches a direct proof of soundness.
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Definition 3.2.16. We say that C satisfies the univalence axiom if it comes equipped with a section
univ of pΠ(Au,Bu).

3.3 Universe categories
Definition 3.3.1. Let C be any category. A universe in C is an object U in C equipped with a
morphism p : Ũ → U and, for each map f : X → U , a distinguished pullback square

(X; f) Ũ

X U

PX,f

Q(f)

⌟ p

f

. (∗)

Intuitively, U corresponds to the universe type U, and the morphism p corresponds to the type
family Γ, x : U ⊢ el(x) type over U. Further, any map α : Y → X isomorphic to PX,f in the over
category C /X corresponds to a judgement of the form Γ ⊢ el(a) type, i.e., a well-formed type.
Notation.

1. For any maps f1 : X → U and f2 : (X; f1) → U , write (X; f1, f2) for the object ((X; f1); f2)
and PX,f1,f2 for the map P(X;f1),f2 .

2. (X; ) := X.

Definition 3.3.2.

1. A universe category is a triple (C , U, 1) where C is a category, U is a universe in C , and 1 is
a terminal object in C .

2. A functor of universe categories from (C , U, 1) to (C ′, U ′, 1′) is a triple (Φ, φ, φ̃) where Φ :
C → C ′ is a functor and φ : Φ(U)→ U ′ and φ̃ : Φ(Ũ)→ Ũ ′ are morphisms such that

(a) Φ maps distinguished pullback squares in C to pullbacks squares in C ′,
(b) Φ maps 1 to a terminal object in C , and
(c) the diagram

Φ(Ũ) Ũ ′

Φ(U) U ′

Φ(p)

φ̃

p′

φ

is a pullback square in C ′.

The notions of a universe category and a functor of universe categories are due to Voevodsky and
can be found in [26].
Remark 3.3.3. Definition 3.3.2 makes the class of all universe categories into a precategory, i.e., a
category except that each composition operation is partial rather than total. For simplicity, we shall
refer to this precategory as a category.
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Now, consider any universe category (C , U, 1). Define the contextual category CU as follows.16

• Obn CU ≡ {(f1, . . . , fn) ∈ (Mor(C ))n | fi : (1; f1, . . . , fi−1)→ U, 1 ≤ i ≤ n}.

• HomCU
((f1, . . . , fn), (g1, . . . , gm)) ≡ HomC ((1; f1, . . . , fn), (1; g1, . . . , gm)).

• 1CU
≡ (), the empty sequence.

• ftn(f1, . . . , fn+1) ≡ (f1, . . . , fn).

• Take P(1;f1,...,fn),fn+1 (as in (∗)) to be the display map p(f1,...,fn+1).

• For any object (f1, . . . , fn+1) and map α : (g1, . . . , gm) → (f1, . . . , fn) in CU , the canonical
pullback of (f1, . . . , fn+1) along α is given by (g1, . . . , gm, fn1 ◦ α), i.e., the canonical pullback
square is precisely the lefthand square in

(1; g1, . . . , gm, fn+1 ◦ α) (1; f1, . . . , fn+1) Ũ

(1; g1, . . . , gm) (1; f1, . . . , fn) U

Q(fn+1◦α)

p(1;g1,...,gm,fn+1◦α)
⌟ Q(fn+1)

p(1;f1,...,fn+1)
⌟

p

α fn+1

. (⋆)

Theorem 3.3.4. There exists a certain functor CC from the category of universe categories to the
category of contextual categories such that CC(C , U, 1) = CU .17

Suppose that U is a universe in C when equipped with either of two choices C and C ′ of distinguished
pullback squares. Further, suppose that both 1 and 1′ are terminal objects in C . These conditions
yield two universe categories UC and UC ′.

Corollary 3.3.5. CC(UC ) and CC(UC ′) are isomorphic as contextual categories.

Proof. The triple (idC , idU , idŨ ) is a functor of universe categories UC → UC ′. Clearly, it is its own
inverse and thus is an isomorphism. This implies that CC(idC , idU , idŨ ) is an isomorphism, thereby
completing our proof.

This means that, up to canonical isomorphism, CU is independent of our choice of distinguished
pullback squares and terminal object in C .

3.4 Logical structure on a universe category
Let (C , U, 1) be a universe category with morphism p : Ũ → U . As we did on contextual categories,
we would like to endow U with logical structures based on the logical rules in T. Moreover, we
would like these structures to induce corresponding logical structures on the contextual category
CU , thereby making CU into a T-structure. (We can think of the logical structure on CU as internal
to that on C .) This section is devoted to describing certain structures on U that achieve these goals.

16[14, Definition 1.3.2].
17[26, Construction 4.7].
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Remark 3.4.1. Throughout this section, we shall assume that C is a locally cartesian closed category
(LCCC). See Section C for a review of this kind of category. Additionally, we shall assume that C

has both an initial object 0 and the coproduct 1
∐

1.

For convenience, Table 4 summarizes our results of this section.

Table 4: Logical structure on U
CDTT LCCC

Dependent product Dependent product
Dependent sum Dependent sum

Empty type Initial object
Unit type Terminal object

Boolean type 1
∐

1
Identity type Path space object
Universe type Internal universe

Dependent products
Consider a distinguished pullback PX,A in C , i.e., a well-formed type A. Consider also a distinguished
pullback PX,A,B , i.e., a type family B over A. Intuitively, to form the dependent product

∏
x:AB(x)

in C , we need a map Π̂(A,B) : X → U along with an isomorphism PX,Π̂(A,B)
∼= ΠPX,A

PX,A,B such
that

(
X; Π̂(A,B)

)
is stable under pullback.

To this end, we endow C with such a map Π̂(A,B) under the assumption that X equals

Π(U) := Σ!U
Πp

(
πU2 : U × Ũ → Ũ

)
and (A,B) equals a special pair (Ag, Bg) of maps determined by Π(U), called the generic pair. As
it turns out, this is enough to produce in CU any dependent product

∏
x:AB(x) as well as ensure

stability.

Note 3.4.2 (Functoriality of Π(−)). Let Pb(C ) denote the category with morphisms in C as
objects and squares of the form

X1 Y1

X2 Y2

x
⌟

y

as morphisms x→ y. (This is a wide subcategory of the arrow category Arr(C ) of C .) Now, let U ′

be another universe in C and let (f, g) be a map p′ → p in Pb(C ):

Ũ ′ Ũ

U ′ U

p′

f

⌟
p

g

. (⋆)
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We can define another map πU
′

2 → πU2 in Arr(C ) by the commutative square

U ′ × Ũ ′ U × Ũ

Ũ ′ Ũ

π2

(g◦π1,f◦π2)

π2

f

.

This induces a unique map H(f, g) : πU ′

2 → f∗πU2 in the over category C /Ũ ′ thanks to the universal
property of pullback squares. Applying the functor Πp′ to H yields a new map

Πp′

(
πU

′

2

)
→ Πp′

(
f∗πU2

)
in C /U ′. In light of Proposition C.0.16, there exists an isomorphism

Πp′
(
f∗πU2

) ∼= g∗Πp

(
πU2
)

natural in πU2 . From this, we get yet another map Πp′

(
πU

′

2

)
→ g∗Πp

(
πU2
)

in C /U ′ and thus a map

Πp′

(
πU

′

2

)
→ Πp

(
πU2
)

in Arr(C ). This is our desired map Π(g) : Π(U ′)→ Π(U) under the identification C /1 ∼= C .

Now, let us return to describing the map Π̂(Ag, Bg) : Π(U)→ U . The map Πpπ2 can be viewed as
a projection map pr : Π(U) → U in C . Take the pullback Π(U) ×U Ũ to be Ag and let αg denote
the corresponding projection map Ag → Π(U). Note that αg = p∗(Πpπ2). Consider now the counit
ϵ of the adjunction Πp ⊣ p∗ and define Bg and βg so that

Bg Ũ

Ag U

βg

⌟
p

π1◦ϵπ2

.

At last, we define a Π-structure on U as a map Π̄ : Π(U) → U together with an isomorphism
Π̄∗p ∼= Παg

βg.

Empty type
Recall that we can think of the empty type as the empty set, i.e., the initial object in Set. This
leads us to define a 0-structure on U as a map 0̄ : 1→ U together with an isomorphism 0̄∗Ũ ∼= 0.

Identity types
Let D be a contextual category. For simplicity, we shall refer to an object (Γ, A) in D by simply A
and to the product (Γ, A) × (Γ, A) in D by A × A. Recall the notion of an Id-type structure on D
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(p. 35). Note that condition (ii) exhibits a section

∆∗
AIdA IdA

A A×A

pIdA

∆A

s∆∗
A

IdA

by way of reflA. This is equivalent to exhibiting a lift

IdA

A A×A

pIdA

∆A

reflA . (†)

Further, condition (iii) exhibits a diagonal fill-in

A B

IdA IdA

d

reflA pB
JB,d .

This implies that reflA has the left lifting property against any display map pC in D . Indeed, for
any map f : IdA → ft(C) and commutative square

A C

IdA ft(C)

reflA

g

pC

f

,

we have a lift

A f∗C C

IdA IdA ft(C)

reflA

g

pf∗C pC

f

.

In light of (†), we see that ∆A factors as a map A→ IdA having the left lifting property against all
display maps followed by a display map IdA → A×A.
Remark 3.4.3. In the language of model categories (Section 4.2), if we view a display map as a
fibration and a map having the left lifting property against all fibrations as a trivial cofibration,
then IdA is precisely a path space object of A.

With this in mind, an Id-structure on U consists of maps Id : Ũ ×U Ũ → U and ζ : Ũ → Id∗
Ũ such

that
Ũ Id∗

Ũ

Ũ ×U Ũ
∆p

ζ

Id∗
p
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commutes and ζ is stably orthogonal to p×U over U , i.e., for any map X → U , every lifting problem

X ×U Ũ Ũ ×U U

X ×U Īd∗
Ũ U ×U U︸ ︷︷ ︸

U

X×ζ

a

p×U

b

between X × ζ and p×U comes equipped with a solution D(a, b) such that for any map f : Y → X

over U ,
D(a, b) ◦

(
f × Īd∗

U
)

= D
(
a ◦
(
f × Ũ

)
, b ◦

(
f × Īd∗

U
))
.

This structure can be thought of as the “generic” identity type just as a Π-structure is seen as the
generic dependent product. This means that it produces in CU every identity type thanks to the
universal properties of a LCCC.

Universe type
A U-structure on U roughly amounts to a universe U0 in C that is “nested” in U . To be precise, a
nested universe in U is a pair (u0, ι) where u0 is a map 1→ U and ι is a map U0 := u∗

0Ũ → U .
Terminology. U0 is called an internal universe, and U a meta-universe.

Note that U0 is, indeed, a universe in C when equipped with the morphism

ι∗p︸︷︷︸
p0

: ι∗Ũ︸︷︷︸
Ũ0

→ U0

and, for each map f : X → U0, the lefthand square in the commutative diagram

(X; ι ◦ f) Ũ0 Ũ

X U0 U

pX,ι◦f

Q(f)

Q(ι◦f)

p0
⌟

p

f ι

as the distinguished pullback square. We say that U0 is closed under Π-types in U if it has a
Π-structure Π̄0 : Π(U0)→ U0 such that

Π(U0) Π(U)

U0 U

Π̄0

Π(ι)

Π̄

ι

commutes (with Π(i) as in Note 3.4.2). We say that U0 is closed under Σ-types, etc. under similar
circumstances.

Again, in the interest of space, we have omitted the definitions of Σ-structure, 1-structure, and
2-structure.
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Induced logical structure on CU

The following result will ensure that the induced Π- and Σ-type structures on CU are stable under
substitution.

Lemma 3.4.4. Let B f2−→ A
f1−→ Γ be a composite of morphisms in C . Let g1 : Γ→ U , g2 : A→ U ,

h1 : A→ Ũ , and h2 : B → Ũ be morphisms in C such that

A Ũ B Ũ

Γ U A U

h1

f1 p

h2

f2 p

g1 g2

are pullback squares. Then there exists a unique map (A,B) such that

B Bg

A Ag

Γ Π(U)

f2
⌟

βg

f1
⌟

αg

(A,B)

(∗)

in C .

Proof. We have a unique mediating map

A

U × U U

U 1

g2

g1×p

k

π2

π1

by the universal property of pullback squares. Note that k is a map g1 × p→ π1 in C /U . Thus, we
can take its exponential transpose k̃ : g1 → (π1)p. Since

(π1)p ≃ Πpp
∗π1 = Πpπ

U
2

by Proposition C.0.15, we see that k̃ is a map g1 → Πpπ
U
2 , i.e., a map (A,B) : Γ→ Π(U) over U . It

is easy to check that this map satisfies (∗). The fact that it is unique is clear from the way in which
it is constructed.

Of course, this universal property fails to imply that the induced Id-type structure is stable. For
this, we use instead the requirement that ζ be stably orthogonal to p× U .

Theorem 3.4.5. Any given logical structure on U induces a corresponding logical structure on CU .18

Proof. Other than the data for Id-elim (i.e., condition (iii) and part of condition (iv) for a Id-
type structure (p. 35)), each corresponding structure flows from the “generic” structure on U in a

18[14, Theorem 1.4.15].
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predictable way. To understand our method for verifying this, it is enough to consider just the data
for Π-form, i.e., condition (i) and part of condition (v) for a Π-type structure (p. 34).
Suppose that U has a Π-structure Π̄ : Π(U) → U . Let (Γ, A,B) ∈ Obn+2 CU . This is precisely a
pair of pullback squares

(1; Γ, A) Ũ (1; Γ, A,B) Ũ

(1; Γ) U (1; Γ, A) U

PΓ,A

Q(A)

p PΓ,A,B

Q(B)

p

A B

in C , which yields another diagram

(1; Γ, A,B) Bg

(1; Γ, A) Ag

(1; Γ) Π(U)

PΓ,A,B βg

PΓ,A αg

(A,B)

consisting of pullback squares via Lemma 3.4.4. Take the composite Π̄◦ (A,B) to be Π(A,B) in CU .
It remains to check that Π(A,B) is stable under substitution in CU . Let f : (1; Γ′) → (1; Γ) be a
map in C . On the one hand, we have that

f∗(Γ,Π(A,B)) =
(
Γ′, Π̄ ◦ (A,B) ◦ f

)
.

On the other hand,

(Γ′,Π(f∗A, f∗B)) =
(
Γ′, Π̄ ◦ (f∗A, f∗B)

)
(f∗A, f∗B) = (A,B) ◦ f

by the uniqueness of (f∗A, f∗B). Hence Π(A,B) is stable.

Remark 3.4.6. It is easy to show that, under this logical structure, CU also satisfies Π-η.

In conclusion, we have a method for building a model of T in a given LCCC: finding a “logically
structured” universe in it. This is precisely the method we employ in Section 5.

3.5 Presheaf universes
At this time, it is worth outlining a modest extension of the map U 7→ CU due to [3]. This requires
a certain concept from algebraic geometry. Suppose that C is any locally small category with a
terminal object 1. At this point, we may pass to a larger Grothendieck universe than our current
one so that C is small (see p. 28).
Notation. Let Y : C → Ĉ denote the Yoneda embedding, as in Lemma C.0.7.

Definition 3.5.1 (Grothendieck). Let Ũ and U be objects in Ĉ . A natural transformation

ρ : Ũ → U
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is representable if for any object C in C and any map T : YC → U , ρ comes equipped with a
distinguished pullback square

YC.T Ũ

YC U

Y(pT )

qT

⌟ ρ

T

in Ĉ , which means that each fiber of ρ is chosen to be a representable object. In this case, we say
that U is a universe in Ĉ .

Since the functor HomC (C,−) : C → Set is limit preserving for each C ∈ Ob C , so is the Yoneda
embedding. Therefore, we can apply Y to Definition 3.3.1 to get a special case of Definition 3.5.1.
As h is fully faithful, this means that any universe in C may be viewed as a universe in Ĉ .

As it turns out, a representable natural transformation ρ over C makes C into a category with
families, equivalently a category with attributes [16, Definition 6.3.3]. This is the same as a contextual
category with the N-grading of Ob C replaced by a chosen class TyC (X) of semantic types as well
as a chosen total object X ⋉A of A for each X ∈ Ob C and A ∈ TyC (X).
Remark 3.5.2. We assume that Conjecture 3.2.13 also holds for categories with attributes.
In particular, a canonical pullback square looks like

Y ⋉ f∗A X ⋉A

Y X

pf∗A

q(f,A)

pA

f

.

If we regard C. T ∈ Ob C as the total object of T , then any such pullback square exists in C . Indeed,
consider the cospan

C. T

B C

pT

f

in C . We have two pullbacks of ρ fitting into a commutative diagram

YB.T◦Y(f) YC.T Ũ

YB YC U

Y(pT ◦Y(f))
g

qT ◦Y(f)

Y(pT )

qT

ρ

Y(f) T

.

As both the total rectangle and the righthand square are pullbacks, so is the lefthand square. Further,
the induced map g has the form Y(q) for some unique map q : B. T ◦ Y(f) → C. T in C since the
Yoneda embedding is fully faithful. It also reflects all limits for the same reason. Therefore, we can
take

B. T ◦ Y(f) C. T

B C

pT ◦Y(f)

q

pT

f
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as a canonical pullback square in C .

Moreover, [3] defines dependent products, dependent sums, and identity types on U just as in
Section 3.4 and proves a corresponding result to Theorem 3.4.5. It is straightforward to extend that
result to the empty type, the unit type, and boolean types on U again with similar definitions to
those found in Section 3.4. In conclusion, if U is logically structured enough, then C models our
type theory T excluding the universe type U.

Let D be a subclass of Mor(C ). We want to specify conditions on D guaranteeing the existence of a
universe U in Ĉ with sufficient logical structure.

Definition 3.5.3. We say that D is stable if

(a) for any f ∈ D, the pullback of f along any map in C exists and

(b) for any pullback square
X4 X1

X3 X2

e
⌟

g

in C , we have that g ∈ D =⇒ e ∈ D.

Define the presheaves D1 and D0 on C as follows, where C/C denotes the under category.

D1(C) ≡ {(a, d) ∈ C/C × D | cod(a) = dom(d)}

D0(C) ≡ {(a, d) ∈ C/C × D | cod(a) = cod(d)}

D1(s : D → C)(a, d) ≡ (a ◦ s, d)

D0(s : D → C)(a, d) ≡ (a ◦ s, d)

Further, define the natural transformation ζ(D) : D1 → D0 componentwise by

ζ(D)C(a, d) ≡ (d ◦ a, d).

Lemma 3.5.4. Suppose that D is stable. Then the natural transformation ζ(D) is representable.

Proof sketch. Let C ∈ Ob C and consider any map T : hC → U . We must exhibit a pullback square
in Ĉ of the form

YC.T D1

YC D0

Y(pT )

qT

⌟
ζ(D)

T

. (⋄)

Note that T is an element of D0(C) via the Yoneda lemma, so that it is a cospan of the form

B

C A

dT

aT
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where dT ∈ D. Take the pullback square

a∗
T (B) B

C A

pT

q̃T

dT

aT

in C . Let C. T = a∗
T (B) and let qT be the map corresponding to the pair (q̃T , dT ) ∈ D1(C. T ) under

the Yoneda lemma. A straightforward yet tedious argument, omitted here, confirms that (⋄) is a
pullback square.

For any X ∈ C , let D(X) denote the full subcategory of C /X consisting of all maps in D with
codomain X.

Definition 3.5.5. We say that D is closed if

(a) it is stable,

(b) it is closed under composition,

(c) every map of the form C → 1 belongs to D,

(d) for any map a : D → C in C , the base change functor a∗ : D(C)→ D(D) has a right adjoint,
and

(e) the inclusion functor D(C) ↪→ C /C preserves exponentials.

Definition 3.5.6. We say that D is factorizing if every map a : C → D in C factors as a = d ◦ f
where d ∈ D and f has the left lifting property against all maps in D.

Theorem 3.5.7. Suppose that D is both closed and factorizing. Then the universe D0 in Ĉ carries
enough logical structure that C (as a category with families) models T excluding U.19

4 Homotopy theory
This section develops those notions from classical homotopy theory which Section 5 will rely on.

4.1 Simplicial sets
Here, we gather a number of standard concepts and properties about the category sSet of simplicial
sets, i.e., the functor category [∆op,Set] where ∆ denotes the category of all nonempty finite ordinals
with order-preserving functions as morphisms, known as the simplex category.

Recall that any simplicial set X admits a nice combinatorial description. Specifically, for any n ∈ N
and integer 0 ≤ i ≤ n+ 1, consider the i-th coface morphism δni : [n]→ [n+ 1] defined by

δni (m) =
{
m m < i

m+ 1 m ≥ i
.

19[3, Theorem 32].
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Also, for any integer 0 ≤ i ≤ n, consider the i-th codegeneracy morphism σni : [n+ 1]→ [n] defined
by

σni (m) =
{
m m ≤ i
m− 1 m > i

.

The following properties of Mor(∆) are easy to verify yet quite useful.

Lemma 4.1.1.

(1) Any morphism [n]→ [m] in ∆ factors uniquely as the composite of an epimorphism [n]→ [p]
(i.e., an order-preserving surjection) and a monomorphism [p]→ [m] (i.e., an order-preserving
injection).

(2) Any epimorphism ϵ : [n] → [p] in ∆ factors uniquely as ϵ = σj1 · · ·σjt
where t ≡ n − p and

0 ≤ j1 < · · · < jt < n.

(3) Any monomorphism µ : [p] → [m] factors uniquely as µ = δir · · · δi1 where r ≡ m − p and
0 ≤ i1 < · · · < ir ≤ m.

Now, let us form the i-th face operator di := X(δni ) : Xn+1 → Xn and i-th degeneracy operator
si := X(σni ) : Xn → Xn+1 in X.
Terminology. The boundary of an n-simplex x ∈ Xn is the tuple ∂x := (d0x, . . . , dnx).
For any n-simplex x in X, we can view di(x) as the (n− 1)-simplex, or face, in X missing the i-th
vertex of x. Moreover, we can view si(x) as the (n+ 1)-simplex having x as its i-th and (i+ 1)-th
faces so that collapsing the edge between its i and (i+ 1)-th vertices yields x. For example, the map
s1 acts on 1-simplices by (

· ·x
)
7→

 ·

· ·x

x

.
Terminology. A simplex of the form si(x) is called degenerate.
Since any epimorphism other than an identity morphism in ∆ factors as a composite of degeneracy
operators, we may say equivalently that x is degenerate if there exist an epimorphism s : [n]→ [m]
with m < n and an m-simplex y ∈ Xm such that x = X(s)(y).

Lemma 4.1.2 (Simplicial identities).

didj = dj−1di for i < j

disj = sj−1di for i < j

disj = idXn
for j ≤ i ≤ j + 1

disj = sjdi−1 for j + 1 < i

sisj = sj+1si for i ≤ j

.

Proof. It is easy to verify that the cosimplicial identities, those dual to the simplicial identities, hold
in ∆, e.g.,

δjδi = δiδj−1, i < j.

Applying now the contravariant functor X on ∆ to the cosimplicial identities yields the simplicial
ones.
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Conversely, a family of set maps

{dni : Xn+1 → Xn | 0 ≤ i ≤ n+ 1, n ∈ N} ∪
{
snj : Xn → Xn+1 | 0 ≤ j ≤ n, n ∈ N

}
satisfying the simplicial identities completely determines a simplicial set X.20 In other words, a
simplicial set amounts to an N-graded set (Xn) equipped with such a family of maps.

Lemma 4.1.3 (Eilenberg-Zilber). For any x ∈ Xn, there exists a unique pair (s, y) where s :
[n]→ [m] is an epimorphism and y is a non-degenerate m-simplex in X satisfying x = X(s)(y).

Proof. To see that such a pair exists, we have two cases to consider.

• If x is non-degenerate, then simply take the pair
(
id[n], x

)
.

• If x is degenerate, then by definition we can find an epimorphism t : [n] → [m] with m < n

and an m-simplex w ∈ Xm such that x = X(t)(w). In this case, if w is non-degenerate, then
we are done. Otherwise, we can find another pair (r, z) witnessing the degeneracy of w, so
that r : [m] → [p] for some p < m. But this process must terminate in finitely many steps,
resulting in our desired pair since any composite of epimorphisms is epic.

To see that (s, y) is unique, suppose that (s′, y′) is another such pair.

Claim. Any epimorphism in ∆ is a split epimorphism.

Proof. Note that any surjective map in ∆ has a set-theoretic section,21 which is easily seen to be
order-preserving. But the epimorphisms in ∆ are precisely the order-preserving surjections, which
completes our proof.

Thus, we may choose sections σ and σ′ of s and s′ in ∆, respectively. This implies that

y = X(σ)(x) = X(σ)X(s′)(y′) = X(s′σ)(y′).

Since y′ is non-degenerate, s′σ must be an automorphism. But the identity map is the only auto-
morphism of a well-ordered set. Hence y′ = y, and any section of s is a section of s′. This means
that s′ = s, so that (s, y) = (s′, y′).

Before moving on, let us record a definition that will appear in Section 4.2.

Definition 4.1.4. A simplicial set is finite if it has only finitely many non-degenerate simplices.

Next, for any integer n ≥ 1 and any simplicial set X, consider the discrete diagram D valued in the
over category sSet /X consisting of all simplicial subsets Y ↪→ X that contain every non-degenerate
simplex in X of degree < n. The limit skn(X) ↪→ X of D, which exists because sSet is complete, is
called the intersection of the Y . We can view the n-skeleton skn(X) of X as the smallest simplicial
subset of X that contains every non-degenerate simplex in X of degree < n. Note that skn(−)
determines a functor sSet→ sSet.

Consider the Yoneda embedding Y : ∆ → ∆̂ (Lemma C.0.7). For any n ∈ N, we call the simplicial
set

∆[n] := Y[n] = ∆(−, [n])

the standard (combinatorial) n-simplex.
20[21, Lemma 6.2.8].
21This is provable in ZF as it follows from the finite version of the axiom of choice.
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Remark 4.1.5. Notice that

∆[n]k ∼= {(x0, . . . , xk) | 0 ≤ xi ≤ xj ≤ n, i ≤ j}

for any k ∈ N. Thus, we can view ∆[n] as the simplicial complex whose k-simplices are precisely the
nonempty subsets of {0, 1, . . . , n} endowed with their natural orders.
Now, the i-th face operator di : ∆[n]k+1 → ∆[n]k is given by(

[k + 1] f−→ [n]
)
7→
(

[k] δi−→ [k + 1] f−→ [n]
)
.

Additionally, the i-th degeneracy operator si : ∆[n]k → ∆[n]k+1 is given by(
[k] f−→ [n]

)
7→
(

[k + 1] σi−→ [k] f−→ [n]
)
.

Using Lemma 4.1.1, we see that the non-degenerate k-simplices in ∆[n] are precisely the monomor-
phisms belonging to ∆([k], [n]). In particular, the unique non-degenerate n-simplex in ∆[n] is pre-
cisely id[n]. Thus, for any simplicial set X, there is a natural one-to-one correspondence

x ∈ Xn ←→ ∆[n] x→ X

where the map x sends the unique non-degenerate n-simplex in ∆[n] to the element x.

Suppose that n ∈ Z≥1. For each i ∈ {0, 1, . . . , n}, The i-th face of ∆[n] is the simplicial subset (i.e.,
subfunctor) ∂i∆[n] of ∆[n] with

∂i∆[n]k ≡ im(∆(δn−1
i )k) ⊂ ∆[n]k

for each k ∈ N. The simplicial subset

∂∆[n] :=
n⋃
i=0

∂i∆[n]

of ∆[n], computed pointwise in Set, is called the simplicial (n− 1)-sphere or boundary of ∆[n].
Remark 4.1.6. The k-simplices of ∂∆[n] are precisely the non-surjective morphisms [k]→ [n] in ∆.
Thus, in light of Remark 4.1.5, we can view ∂∆[n] as the simplicial complex whose k-simplices are
precisely the nonempty proper subsets of {0, 1, . . . , n} endowed with their natural orders.

Geometric realization
Let D be any cocomplete, locally small category and let C be any small category. Suppose that F
is a covariant functor C → D . For each X ∈ Ob D , consider the presheaf

RF (X) ≡ HomD(F (−), X) : C op → Set .

Also, for any map f : X → Y in D , define the natural transformation RF f : RF (X) → RF (Y )
componentwise by

RF (X)c → RF (Y )c, φ 7→ f ◦ φ.,

thereby yielding a functor RF : D → [C op,Set].
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Example 4.1.7. We can view each nonempty finite ordinal as an order category. This means that
∆ is precisely the full subcategory of Cat on all nonempty finite ordinals. Consider the full inclusion
ι : ∆ ↪→ Cat. Then for each small category E , NE := Rι(E ) is a simplicial set (called the nerve
of E ) with NEn = HomCat([n],E ) for each n ∈ N, i.e., the set of all sequences of n composable
morphisms in E . The i-th face operator di : NEn+1 → NEn is given by

x0 → x1 → · · · → xn+1 → xn+2 7→


x1 → x2 → · · · → xn+1 → xn+2 i = 0
x0 → x1 → · · · → xn → xn+1 i = n+ 1
x0 → · · · → xi → xi+2 → · · · → xn+2 otherwise

,

and the j-th degeneracy operator sj : NEn → NEn+1 is given by

(x0 → x1 → · · · → xn → xn+1) 7→
(
x0 → · · · → xj

idxj−−−→ xj → xj+1 → · · · → xn+1

)
for each j = 0, 1, . . . , n.

In general, RF has a left adjoint, which we now begin constructing. To this end, consider the
following generalization of Definition C.0.2.

Definition 4.1.8. Let A be a closed monoidal category and B a category enriched over A . Let
b ∈ Ob B and S ∈ Ob A . The copower of b by S is an object S ⊙ b in B together with a natural
isomorphism

HomB(S ⊙ b, y) ∼= [S,HomB(b, y)]

in y ∈ Ob B.

For example, since D is enriched over Set and has all coproducts by assumption, the copower of
x ∈ Ob D by a set S is precisely the coproduct

∐
s∈S x of |S| many copies of x along with the natural

isomorphism

HomD

(∐
s∈S

x, y

)
∼=
∏
s∈S

HomD(x, y) ∼= HomSet(S,HomD(x, y))

witnessing the fact that HomD(−, y) : Dop → Set is a continuous functor for each y ∈ Ob D .

Definition 4.1.9. Suppose that A is a small category and B is cocomplete. Let G : A op×A → B

be a functor. The coend of G is the coequalizer of the diagram

∐
f :a′→a

G(a, a′)
G(a,f)−−−−−→−−−−−→
G(f,a′)

∐
a∈Ob A

G(a, a)
∫ a:A

G(a, a) (•)

in B.

Here is an equivalent description of the coend of G. A cowedge k : G → w for G is an object w
in B together with a family of morphisms {ka : G(a, a)→ w | a ∈ Ob A } such that for each map
f : a′ → a in A , the square

w G(a′, a′)

G(a, a) G(a, a′)

ka′

ka

G(a,f)

G(f,a′)
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commutes. The coend
∫ a:A

G(a, a) ofG is defined as a universal cowedge
{
k̃a : G(a, a)→ w | a ∈ Ob A

}
for G in the sense that there exists a unique map

∫ a:A
G(a, a)→ w in B such that any diagram of

the form ∫ a:A
G(a, a)

w G(a′, a′)

G(a, a) G(a, a′)

ka′

k̃a′

kak̃a G(f,a′)

G(a,f)

.

commutes. We have a category Cwd(G) with cowedges for G as objects and maps u : w → w′ in B

for which the triangle
w w′

G(a, a)

u

ka
k′

a

commutes for every a ∈ Ob A as morphisms w → w′. Note that the coend
∫ a:A

G(a, a) is precisely
the initial object of Cwd(G). Thus, it may be viewed as either a colimit in B or a colimit in
Cwd(G).

Definition 4.1.10. The Yoneda extension of F is the functor

F̃ : [C op,Set]→ D , X 7→
∫ c:C

X(c)⊙ F (c).

We call |X| := F̃ (X) the geometric realization of X with respect to F .

If F denotes the functor ∆→ Top mapping [n] to the standard topological n-simplex ∆n, then we
recover the familiar definition of |(Xn)| as a quotient space∐

m≥0
(Xm ×∆m)⧸∼

where each set Xm is endowed with the discrete topology.

Proposition 4.1.11. For any simplicial set X, |X| is a CW-complex.

Intuitive proof. For each integer m ≥ 0, consider the subset Ym ⊂ Xm of all non-degenerate m-
simplices. Then |X| is obtained by gluing together countably many disjoint unions Ym × ∆m ∼=∐
y∈Ym

∆m of topological simplices ∆m along their individual boundaries ∂∆m. Therefore, |X|
carries the structure of a CW-complex.

This means that the functor |−| : sSet→ Top takes values in the full subcategory kTop of k-spaces,
i.e., quotient spaces of disjoint unions of compact Hausdorff spaces.

The subcategory kTop ⊂ Top has a coreflection k : Top → kTop, known as k-ification. For any
topological space U , the k-space k(U) is given by the set U topologized so that a subset A ⊂ U is
closed if and only if A∩H is closed in U for any compact Hausdorff subspace of U . Thus, k(U) has
a finer topology than U .
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Since right adjoints preserve limits and Top is complete, we have that kTop is complete. Indeed,
let D : J → kTop be a functor. Then

k
(

lim
J

(ι ◦D)j
)
∼= lim

J
(k ◦ ι ◦D)j

where ι : kTop ↪→ Top denotes inclusion.

Proposition 4.1.12. Consider any adjoint pair (F : C → D , G : D → C ) of functors. If F is fully
faithful, then the unit η : idC → G ◦ F is an isomorphism.

Proof. Let the natural isomorphism φ : HomD(F (−),−)
∼=−→ HomC (−, G(−)) witness our adjunc-

tion. Suppose that F is fully faithful. Then we have a composite of isomorphisms

HomC (x, y) HomD(Fx, Fy) HomD(x,GFy)
F (−)

∼=
φx,F y

∼=

for any x, y ∈ Ob C . For any map f : x→ y in C , we have that

φx,Fy(F (f)) = G(F (f)) ◦ ηx (unit identity)
= ηy ◦ f. (naturality of η)

Thus, our composite isomorphism is given by f 7→ ηy◦f , i.e., HomC (x, ηy). As the Yoneda embedding
reflects isomorphisms, we see that ηy : y

∼=−→ GFy is an isomorphism, i.e., η is an isomorphism.

As a consequence, k ◦ ι is naturally isomorphic to the identity functor because. Hence limJ Dj is
given by k

(
limJ (ι ◦D)j

)
. Note that the limit of a diagram in kTop is obtained by k-ifying the

limit of the same diagram in Top.

Theorem 4.1.13.

(1) The functor |−| : sSet→ kTop preserves finite products.22

(2) The functor |−| : sSet→ kTop preserves equalizers, hence all finite limits.23

Let us now return to our general setting.

Lemma 4.1.14.
(
F̃ , RF

)
is an adjoint pair.24

Proof. Let x ∈ Ob C and consider the Yoneda embedding Y : C → Ĉ . For each c ∈ Ob C , define
the map kc :

∐
s∈Yx(c) F (c) → F (x) in D by the copairing (F (s) : F (c)→ F (x))s∈Yx(c). For any

map f : c′ → c in C and any s ∈ Yx(c), we have that

F (s) ◦ F (f) = F (s ◦ f) = F (Yx(f)(s)) = F (Yx(f)(s)) ◦ idF (c′) .

22[12, Lemma 3.1.8].
23[12, Lemma 3.2.4].
24Cf. [18, Section 4].
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This implies that the square

F (x)
∐
s∈Yx(c′) F (c′)

∐
s∈Yx(c) F (c)

∐
s∈Yx(c) F (c′)

kc′

kc

Yx(c)⊙F (f)

Yx(f)⊙F (c′)

commutes, so that {kc} is a cowedge to F (x). Let
{
k′
c :
∐
s∈Yx(c) F (c)→ w

}
be another cowedge.

Consider the composite k′
x ◦ iidx

: F (x) → w, where iidx
denotes inclusion. For any map s : c → x

in C , the fact that

w
∐
t∈Yx(c) F (c)

∐
t∈Yx(x) F (x)

∐
t∈Yx(x) F (c)

k′
c

k′
x

Yx(x)⊙F (s)

Yx(s)⊙F (c)

commutes yields

k′
x ◦ iidx

◦ kc ◦ is = k′
x ◦ iidx

◦ F (s)
= k′

c ◦ (Yx(s)⊙ F (c)) ◦ iidx

= k′
c ◦ iYx(s)(idx) ◦ idF (c)

= k′
c ◦ is.

It follows that F (x) is a universal cowedge. By uniqueness of colimits, we have a natural isomorphism

F (x) ∼=
∫ c:C

Yx(c)⊙ F (c) = F̃ (Yx)

in x. Thanks to this as well as the Yoneda lemma, we have a sequence of isomorphisms

Hom
Ĉ

(Yx, RF (d)) ∼= RF (d)x = HomD(F (x), d) ∼= HomD(F̃ (Yx), d) (♦)

natural in both x and d. By Theorem C.0.8, every presheaf X : C op → Set is naturally isomorphic
to a small colimit of representable presheaves. Further, colimits commute with colimits, and thus F̃
commutes with all colimits. Since the hom-functor of any locally small category is continuous in its
first variable, we can conclude that (♦) holds with Yx replaced by any presheaf X.

Kan fibrations
Let n ∈ Z≥1. For each integer 0 ≤ k ≤ n, the simplicial subset

Λk[n] :=
⋃

i∈{0,...,k−1,k+1,...,n}

∂i∆[n]

of ∆[n], computed pointwise in Set, is called the (simplicial) (n, k)-horn. For any simplicial set X,
an (n, k)-horn in X is a simplicial map Λk[n]→ X.
Terminology. If 0 < k < n, then such a map is called an inner horn in X. Otherwise, it is called an
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outer horn in X.

Example 4.1.15. The geometric realization of the inner horn in ∆[2] looks like

1

0 2
,

whereas the geometric realizations of the two outer horns in ∆[2] look like

1 1

0 2 0 2

We say that X is a Kan complex if every horn in X has a filler, i.e., can be extended to ∆[n] along
the inclusion map:

Λk[n] X

∆[n]

.

Intuitively, by the Yoneda lemma, such an extension picks out a unique n-simplex in X all of whose
faces but one are determined by the given horn in X.

Definition 4.1.16 (Kan fibration). A map p : X → Y of simplicial sets is a Kan fibration if any
commutative square of the form

Λk[n] X

∆[n] Y

p

admits a lift
Λk[n] X

∆[n] Y

p .

This means that X is a Kan complex if and only if the unique map X → 1 from X to the terminal
object ∆[0] is a Kan fibration.

Now, let C be any cocomplete category. We say that a subclass of Mor(C ) is saturated if it

(i) contains all isomorphisms in C ,

(ii) is closed under pushouts,

(iii) is closed under retracts (see (†) below), and

(iv) is closed under transfinite compositions (see Definition 4.2.13 below).

Terminology. The smallest saturated class containing a given class K of morphisms in C is called
the saturated class generated by K.
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Definition 4.1.17 (Anodyne extension). A map of simplicial sets is an anodyne extension if it
belongs to the saturated class generated by the set{

Λk[n] ↪→ ∆[n] | n ≥ 1, 0 ≤ k ≤ n
}

of horn inclusions.

Notation. A will denote the class of all anodyne extensions.
Thanks to Remark 4.2.15 below, we see that a simplicial map is a Kan fibration if and only if it has
the right lifting property against A.

We want to look at a certain class of Kan fibrations that will play a key role in our interpretation of
CDTT + Univ in sSet. For this, we must first gather some standard concepts of simplicial homotopy
theory.

Definition 4.1.18 (Simplicial homotopy). Let f, g : X → Y be maps of simplicial sets. A
(simplicial) homotopy f ≃−→ g from f to g is a map h : X ×∆[1]→ Y of simplicial sets fitting into
a commutative diagram

X︷ ︸︸ ︷
X ×∆[0]

X ×∆[1] Y

X ×∆[0]︸ ︷︷ ︸
X

fidX ×δ1

h

gidX ×δ0

.

Notation.

• h0 := h ◦ (idX ×δ1).

• h1 := h ◦ (idX ×δ0).

The cospan ∆[0] ∆[1] ∆[0]0:=δ1 1:=δ0 is the standard interval object in sSet, analogous to the
standard interval object

{0} [0, 1] {1}

in Top. From this perspective, any simplicial homotopy h : f ≃−→ g satisfies h(x, 0) = f(x) and
h(x, 1) = g(x) for all simplices x in X.

Simplicial homotopy ≃ is not an equivalence relation in general. For example, let n ∈ Z≥1 and
consider the simplicial maps ι0, ι1 : ∆[0]→ ∆[n] induced by the monomorphisms 0 7→ 0 and 0 7→ 1,
respectively, in ∆. In light of Remark 4.1.5, it is easy to see, on the one hand, that the map sending,
say, (0, 0, 1, 1) to itself determines a homotopy from ι0 to ι1. On the other hand, there is no homotopy
from ι1 to ι0, because 0 ≤ 1. This shows that ≃ is not symmetric in general.

Lemma 4.1.19. Simplicial homotopy is an equivalence relation on the class of all simplicial maps
X → Y with Y a Kan complex.
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Proof. For the moment, assume that X = ∆[0]. Then, by the Yoneda lemma, there is a homotopy
f

≃−→ g if and only if there is a 1-simplex v ∈ Y1 such that ∂v = (g, f). Thus, the equation
∂s0f = (f, f) witnesses the fact that ≃ is reflexive.

Next, to see that ≃ is symmetric, let ∂v2 = (g, f). Let v1 = s0f . Then d1v1 = d1v2. From this,
we get a (2, 0)-horn (v1, v2) in Y where vi acts on the i-th face of Λ0[2] for each i = 1, 2. As Y is a
Kan complex by hypothesis, this has a filler

Λ0[2] Y

∆[2]

(v1,v2)

θ
.

By the simplicial identities, we have that

∂(d0θ) = (d0d0θ, d1d0θ)
= (d0d1θ, d0d2θ)
= (f, g),

so that there is a homotopy from g to f .

Finally, to see that ≃ is transitive, let ∂v2 = (g, f) and ∂v0 = (j, g). This means that d1v0 = d0v2,
thereby yielding a (2, 1)-horn (v0, v2) in Y . As Y is a Kan complex, this has a filler:

Λ1[2] Y

∆[2]

(v0,v2)

θ′
.

We have that

∂(d1θ
′) = (d0d1θ

′, d1d1θ
′)

= (d0d0θ
′, d1d2θ

′)
= (j, f),

so that f is homotopic to j.

Now, assume that X is arbitrary. Since sSet is cartesian closed by Lemma C.0.10, any simplicial
map f : X×∆[0] ∼= X → Y naturally corresponds to a map f̃ : ∆[0]→ Y X . Likewise, any simplicial
homotopy h : X×∆[1]→ Y naturally corresponds to a map h̃ : ∆[0]×∆[1] ∼= ∆[1]→ Y X . Therefore,
any homotopy h : f ≃−→ g naturally corresponds to a homotopy h̃ : f̃ ≃−→ g̃. In this case, we have
shown that ≃ is an equivalence relation, and thus our proof is done.

It follows at once that for any n ∈ Z≥1, ∆[n] is not a Kan complex.

For any simplicial set X, the set π0(X) of connected components of X is precisely the coequalizer in
the diagram

X1
d0−−→−−→
d1

X0 π0(X).
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Explicitly, π0(X) equals the set of all connected components of the undirected graph

(X0, EX0), EX0 ≡ {{d0(x), d1(x)} | x ∈ X1}.

By viewing a 1-simplex in X as a homotopy, we thus have π0(X) as the quotient of the set of all
vertices in X by the equivalence relation ≃.
Remark 4.1.20. We can generalize this notion a bit. Let C be a category enriched over the cartesian
monoidal category sSet. Then the category π0(C ) of components of C is given by

Obπ0(C ) ≡ Ob C

Homπ0(C )(a, b) ≡ π0(HomC (a, b)).

It follows easily from the universal property of coequalizers that any sSet-enriched functor F : C →
D induces a functor π0(F ) : π0(C )→ π0(D).

Moving on, for any two simplicial maps i : A→ B and k : Y → Z, consider the pushout product

i ∗ k : (A× Z) ∪A×Y (B × Y )→ B × Z,

i.e., the unique map fitting into a commutative diagram

A× Y B × Y

A× Z (A× Z) ∪A×Y (B × Y )

B × Z

A×k

i×Y

B×k

i×Z

i∗k

.

Notice that B × Z ∼= Z × B and (A× Z) ∪A×Y (B × Y ) ∼= (Y ×B) ∪Y×A (Z ×A). Moreover, it is
easy to check that if both i and k are monic (i.e., levelwise injections), then so is i ∗ k.

Theorem 4.1.21 (Gabriel-Zisman). If i and k are monic and i is anodyne, then i∗k is anodyne.25

Proof. Let k : Y → Z be any simplicial map. Let D denote the class of all monomorphisms i : A→ B

such that i ∗ k is an anodyne extension. We must show that A ⊂ D.

Fact. Let C denote the saturated class generated by{
ιe ∗m : ({e} × Z ′) ∪ (∆[1]× Y ′)→ ∆[1]× Z ′ | m : Y ′ monic−−−−→ Z ′, e = 0, 1

}
where ιe denotes the horn inclusion {e} ↪→ ∆[1] for each e = 0, 1. Then A = C.26

Therefore, it suffices to show that C ⊂ D.
25[13, Theorem 3.2.2].
26[13, Theorem 3.2.3].
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We have that D is saturated. For example, to see that D is closed under pushouts, let i ∈ D and
consider the pushout square

A C

B D

i

⌜

f

f∗i

f ′

, (1)

where f∗i is monic since pushouts preserve monomorphisms in Set. This square induces another
pushout square

A× Z C × Z

B × Z D × Z

i×Z
⌜

f×Z

f∗i×Z

f ′×Z

. (2)

Let p : U → V be a Kan fibration. We must show any lifting problem of the form

(C × Z) ∪ (D × Y ) U

D × Z V

f∗i∗k p (3)

has a solution. To this end, note that the commutative diagram

(A× Z) ∪ (B × Y ) (C × Z) ∪ (D × Y ) U

B × Z D × Z V

i∗k f∗i∗k p

induced by (2) admits a lift B × Z → U . By the universal property of (2), we obtain a unique
mediating map D × Z → U , which is a solution to (3).

Thus, it suffices to show that for each monomorphism m : Y ′ → Z ′ and each integer 0 ≤ e ≤ 1, the
map

ιe ∗m : ({e} × Z ′) ∪ (∆[1]× Y ′)→ ∆[1]× Z ′

belongs to D. It is easy to see that the maps

(ιe ∗m) ∗ k : ((({e} × Z ′) ∪ (∆[1]× Y ′))× Z) ∪ ((∆[1]× Z ′)× Y ) −→ (∆[1]× Z ′)× Z
ιe ∗ (m ∗ k) : ({e} × Z ′ × Z) ∪ (∆[1]× (Y ′ × Z ∪ Z ′ × Y )) −→ ∆[1]× (Z ′ × Z)

are isomorphic in Arr(sSet). But ιe ∗ (m ∗ k) belongs to C and thus is anodyne. This implies that
(ιe ∗m)∗k is also anodyne since A is closed under retracts. Hence the monomorphism ιe ∗m belongs
to D, as desired.

Corollary 4.1.22 (Covering homotopy extension property). Let p : U → V be a Kan fibration
and k : Y → Z be a monomorphism. Any commutative diagram of the form

(Y ×∆[1]) ∪ (Z × {e}) U

Z ×∆[1] V

k∗ιe p
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has a diagonal fill-in for each e = 0, 1.

Suppose that L is a simplicial subset of X and that f ↾L= g ↾L. We say that a homotopy h : f ≃−→ g

is a simplicial homotopy from f to g relative L if the square

L×∆[1] L

X ×∆[1] Y

π1

ι×id∆[1] f↾L=g↾L

h

commutes. The relation ≃ relL is also an equivalence relation when Y is a Kan complex.

Suppose that p : X → Y is a Kan fibration. We say that p is minimal if for any commutative
diagram of the form

∂∆[n]×∆[1] ∂∆[n]

∆[n]×∆[1] X

∆[n] Y

π1

π1

h

p

, (∗)

the diagram

∆[n]
(id∆[n],δ0)
−−−−−−−−−−−−−−−−−−→→

(id∆[n],δ1)
∆[n]×∆[1] h−→ X

commutes. The bottom square of (∗) exhibits h as a fiberwise homotopy. Note that p is minimal
precisely when

• h is a homotopy relative boundary,

• p ◦ h0 = p ◦ h1 (i.e., h0 and h1 are in the same fiber of p), and

• whenever h is a fiberwise homotopy relative ∂∆[n], we have that h0 = h1.

In general, we say that two n-simplices e, e′ : ∆[n] → X of X are p-fiberwise homotopic relative
boundary, written as e ≃p e′ rel ∂∆[n], if there is a diagram of the form (∗) such that h0 = e and
h1 = e′. Then p is a minimal fibration if and only if e ≃p e′ =⇒ e = e′.

Proposition 4.1.23. ≃p rel ∂∆[n] is an equivalence relation.

Definition 4.1.24 (Deformation retraction). Let i : A→ B be a map of simplicial sets and let
r : B → A be a retraction of i.

1. We say that r is a deformation retraction of i if there is a homotopy h : B ×∆[1] → B from
idB to i ◦ r.
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2. We say that r is a strong deformation retraction of i if it is a deformation retraction of i and
the homotopy h is stationary on A in the sense that

A×∆[1] B ×∆[1]

A B

i×id∆[1]

π1 h

i

commutes.

Theorem 4.1.25. Let p : X → Y be any Kan fibration. There exists a commutative diagram

Z X Z

Y

p′

j g

p
p′

(•)

such that g is a fiberwise strong deformation retraction of j and p′ is a minimal fibration.27

Lemma 4.1.26 (Quillen). The map g in (•) has the right lifting property against the inclusion
in : ∂∆[n] ↪→ ∆[n] for every n ∈ N.28

Proof. Since g is a fiberwise strong deformation retraction of j by hypothesis, we have a homotopy
h : X ×∆[1]→ X fitting into commutative diagrams

X Z X ×∆[1] X

X ×∆[1] X X Y

X

δ1

g

j

h

π1 p

h
p

δ0 idX

.

Now, consider any lifting problem
∂∆[n] X

∆[n] Z

in

a

g

b

between in and g with n ≥ 1. It is easy to check that these two squares along with (•) yield
additional commutative diagrams

∂∆[n] X Z X ∂∆[n]×∆[1] X ×∆[1] X

∆[n] Z Y ∆[n]×∆[1] ∆[n] Y

a

in

g j

p in×id∆[1]

a×id∆[1] h

p

b

j

p′ π1 p′◦b

⇓
27[13, Theorem 3.3.3].
28[8, Lemma 10.11].
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(∂∆[n]×∆[1]) ∪ (∆[n]× {0}) X

∆[n]×∆[1] ∆[n] Y

(h◦(a×id∆[1]),j◦b)

p

π1 p′◦b

.

Since p is a Kan fibration, our last diagram admits a diagonal fill-in H : ∆[n] × ∆[1] → X by
Corollary 4.1.22. Consider the n-simplex v in X given by

∆[n]×∆[0] ∆[n]×∆[1] X
δ0 H .

Then the triangle
∂∆[n] X

∆[n]

in

a

v

commutes since h1 = idX . Therefore, the composite t := g ◦ h ◦
(
v × id∆[1]

)
: ∆[n]×∆[1]→ Z is a

homotopy g ◦ j ◦ g ◦ v︸ ︷︷ ︸
g◦v

≃−→ g ◦ v such that t ↾∂∆[n]×∆[1]= g ◦ h ◦
(
a× id∆[1]

)
. Note that g ◦H and t

together determine a map ⟨g ◦H, t⟩ : ∆[n]× Λ0[2]→ Z, with

⟨g ◦H, t⟩ ↾∆[n]×∂1∆[2] = g ◦H
⟨g ◦H, t⟩ ↾∆[n]×∂2∆[2] = t.

We now have a commutative diagram

(∂∆[n]×∆[2]) ∪
(
∆[n]× Λ0[2]

)
Z

∆[n]×∆[2] ∆[n] Y

(g◦h◦(a×σ1),⟨g◦H,t⟩)

p′

π1 p′◦b

,

which admits a diagonal fill-in H ′ : ∆[n]×∆[2]→ Z thanks to Corollary 4.1.22. This yields another
commutative diagram

∂∆[n]×∆[1] ∂∆[n]

∆[n]×∆[1] Z

∆[n] Y

π1

g◦a

π1

H′◦(id∆[n] ×δ0)

p′

p′◦b

.

This shows that g ◦ v ≃p′ b. As p′ is minimal, it follows that g ◦ v = b, so that v is a solution to our
lifting problem. This completes our proof.

Weak homotopy equivalences
Recall from Definition 4.1.10 the geometric realization functor |−| : sSet → kTop. We say that
a simplicial map f : X → Y is a weak homotopy equivalence if |f | : |X| → |Y | is a homotopy
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equivalence of topological spaces.
Remark 4.1.27. By the Whitehead theorem, f is a weak homotopy equivalence in sSet if and only
if |f | is a weak homotopy equivalence in kTop.

Definition 4.1.28. A simplicial set X is contractible if the unique map X → 1 is a weak homotopy
equivalence.

Example 4.1.29. Any horn Λk[n] is contractible.

Suppose that p : Y → X is a map of simplicial sets. Let F be a simplicial set such that for each
vertex x0 ∈ X0, the fiber

Y ×X ∆[0] ∆[0]

Y X

x0

p

of p over x0 is isomorphic to F . In this case, we say that p is a fiber bundle with standard fiber F .

Theorem 4.1.30. If p is a minimal fibration with two pullback squares

f∗
1Y Y f∗

2Y Y

A X A X

p p

f1 f2

and a homotopy f0
≃−→ f1, then there is a commutative triangle of the form

f∗
1Y f∗

2Y

A

∼=

.

Proof reference. See [8, Corollary 10.7].

Corollary 4.1.31. If p is a minimal fibration and X is connected (i.e., π0(X) = 1), then it is a
fiber bundle.

Proof. Suppose that p is a minimal fibration and that X is connected. Consider any two vertices
v1, v2 : ∆[0]→ X in X. Since X is connected, there is a 1-simplex z in X whose boundary ∂z equals
(v2, v1). Then z is precisely a homotopy v1

≃−→ v2. By Theorem 4.1.30, the fiber of p over v1 is thus
isomorphic to that over v2.

Theorem 4.1.32. If p is a minimal fibration and X is contractible, then p is trivializable, i.e.,
isomorphic to the trivial bundle

F ×X

X

π2

over X with fiber F .29

29[4, Corollary III.5.6].
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Lemma 4.1.33. If p is merely a Kan fibration, then the trivial bundle F × X
π2−→ X is a Kan

fibration.

Proof. Note that the unique map F → ∆[0] is precisely the pullback

F Y

∆[0] X

⌟
p

x0

.

Thus, F is a Kan complex by Lemma 4.2.6 below. Moreover, π2 is precisely the pullback

F ×X F

X ∆[0]

π2

π1

⌟ .

Hence π2 is a Kan fibration again by Lemma 4.2.6.

4.2 Quillen model categories
This section begins to develop the theory of model categories, a generalized setting for homotopy
theory (whether simplicial or topological) originally developed by Quillen. This will provide the
background for Section 4.3, which examines the classical model structure on sSet. This, in turn,
will play a key role in Section 5.
Our treatment of model categories is mainly based on [9] and [12].

Definition 4.2.1. We say that a category C is a category with weak equivalences if it is equipped
with a subclass W of Mor(C ) consisting of weak equivalences such that every isomorphism in C

belongs to W and W satisfies two-out-of-three, i.e., for any commutative triangle

Y

X Z

in C , if two of these three morphisms are in W , then so is the third.

Definition 4.2.2 (Model category). Let C be a category with all small limits and colimits.

1. A weak factorization system (WFS) on C is a pair (L,R) of subclasses of Mor(C ) such that

(i) any morphism in C factors as a morphism in L followed by a morphism in R,
(ii) L consists of all R-projective morphisms in C , i.e., those with the left lifting property

against every morphism in R, and
(iii) R consists of all L-injective morphisms in C , i.e., those with the right lifting property

against every morphism in L.

2. A category (C ,W ) with weak equivalences is a model category if C is equipped with two addi-
tional subclasses Fib and Cof of Mor(C ) consisting of fibrations and cofibrations, respectively,
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such that the pairs trivial cofibrations︷ ︸︸ ︷
W ∩Cof , F ib


Cof, W ∩Fib︸ ︷︷ ︸

trivial fibrations


are both weak factorization systems on C .
In this case, the triple (Fib, Cof,W ) is called a model structure on C .

Remark 4.2.3. For any WFS (L,R) on C , both L and R contain all isomorphisms in C . Hence Fib,
Cof , and W contain all isomorphisms in C . Thus, the condition of Definition 4.2.1 that W must
contain all isomorphisms in C is superfluous for Definition 4.2.2.

Terminology. Let C be a model category and let X ∈ Ob C .

1. We call X cofibrant if the unique map 0→ X is a cofibration.

2. We call X fibrant if the unique map X → 1 is a fibration.

Definition 4.2.4 (Properness). Let (C , F ib, Cof,W ) be a model category.

1. We say that C is right proper if for any pullback square

X ′ X

Y ′ Y

⌟
w′ w

f

where f ∈ Fib and w ∈W , we have w′ ∈W .

2. We say that C is left proper if for any pushout square

X X ′

Y Y ′

f

⌜
w w′

where f ∈ Cof and w ∈W , we have w′ ∈W .

We say that C is proper if it is both right proper and left proper.

Lemma 4.2.5. Suppose that both C and D are model categories. Let (F : C → D , G : D → C ) be
an adjoint pair of functors.

(a) F preserves cofibrations if and only if G preserves trivial fibrations.

(b) Dually, G preserves fibrations if and only if F preserves trivial cofibrations.
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Proof sketch. Suppose that F preserves cofibrations. Let f : A → B be a cofibration in C and
g : C → D be a trivial fibration in D . Any lifting problem between f and G(g) induces a lifting
problem between F (f) and g by adjunction.

A G(C) =⇒ F (A) C

B G(D) =⇒ F (B) D

f G(g) F (f) g

Since g is a trivial fibration, there is a solution ĝ : F (B)→ C to our righthand lifting problem. The
conjugate of ĝ under our adjunction is a solution to our lefthand lifting problem. This proves that
G(g) has the right lifting property against every cofibration in C , i.e., that G(g) is a trivial fibration
in C .
A similar argument proves that if G preserves trivial fibrations, then F preserves cofibrations.

Lemma 4.2.6. Let (L,R) be a WFS on C . Then L is closed under pushouts. Dually, R is closed
under pullbacks.

Proof sketch. Consider any pushout square

A C

B B ∪A C

x

y

y∗x

where x ∈ L. Let
C X

B ∪A C Y

y∗x

t

f

be a commutative diagram with f ∈ R. We must find a lift B ∪A C → X. To this end, note that
the commutative diagram

A C X

B B ∪A C Y

y

x

t

f

admits a lift s : B → X because x ∈ L and f ∈ R. By the universal property of pushout squares, the
pair (s, t) induces a unique mediating map B ∪A C → X, which is a solution to our lifting problem
between y∗x and f .

Lemma 4.2.7 (Ken Brown). Suppose that (C , F ib, Cof,W ) is a model category and (D ,W ) is
a category with weak equivalences. Let F : C → D be a functor sending any trivial fibration of
fibrant objects to a weak equivalence. Then F sends any weak equivalence of fibrant objects to a weak
equivalence.
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Proof. Let f : A→ B be a weak equivalence of fibrant objects in C . The pullback square

A×B B

A 1

π1

π2

⌟

exhibits the projections π1 and π2 as fibrations in C by Lemma 4.2.6. Now, factor the map h :=
(idA, f) : A→ A×B as

A C A×Bp1

h

p2

where p1 ∈ W ∩Cof and p2 ∈ Fib. Both π1 ◦ p2 and π2 ◦ p2 are weak equivalences by two-out-of-
three. They are also fibrations since Fib is closed under composition. For the same reason, C is
fibrant. Therefore, both π1 ◦ p2 and π2 ◦ p2 are trivial fibrations of fibrant objects. By hypothesis,
it follows that both F (π1 ◦ p2) and F (π2 ◦ p2) are weak equivalences in D . As

F (π1 ◦ p2 ◦ p1) = F (idA) = idF (A)

is a weak equivalence in D as well, we have that F (p1) is a weak equivalence by two-out-of-three.
Applying two-out-of-three yet again shows that

F (π2 ◦ p2 ◦ p1) = F (f)

is a weak equivalence, as desired.

Let I denote the interval category {0→ 1}. The functor category C I := [I,C ] is isomorphic to the
arrow category Arr(C ) of C .

Lemma 4.2.8. Let (L,R) be a WFS on C . Then L is closed under coproducts in C I . Dually, R
is closed under products in C I .

Proof. Let {fs : As → Bs}s∈S be any set of elements of L. As colimits in C I are computed pointwise,
their coproduct is precisely the map

∐
s∈S As

∐
s∈S Bs

(fs)s∈S

induced by the universal property of coproducts. Let∐
s∈S As X

∐
s∈S Bs Y

(fs)s∈S
p

be any lifting problem such that p ∈ R. By the universal property of coproducts, this naturally
corresponds to the set 

As X

Bs Y

fs
p | s ∈ S


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of lifting problems, each of which has a solution ℓs : Bs → X by hypothesis. Again, by the universal
property of coproducts, the induced map (ℓs)s∈S is a solution to our original lifting problem. Hence
(fs)s∈S belongs to L.

Consider a commutative diagram of the form

A C A

B D B

f

idA

g f

idB

(†)

in a category C . In this situation, we say that f is a retract of g. This corresponds to a retraction
(i.e., left-inverse) in the arrow category C I .

Notation. Let J be a subclass of Mor(C ).

• ret(J) will denote the class of all retracts of elements in J .

• rlp(J) will denote the class of all maps in C with the right lifting property against every
element of J .

• llp(J) will denote the class of all maps in C with the left lifting property against every element
of J .

Lemma 4.2.9 (Retract argument). Consider any composite h ≡ f ◦ g of maps in C .

(a) If h has the left lifting property against f , then h is a retract of g.

(b) Dually, if h has the right lifting property against g, then h is a retract of f .

Proof. Suppose that h has the left lifting property against f . We have a lifting problem of the form

A C

B B,

h

g

f

which has a solution t : B → C by hypothesis. As a result, we get a commutative diagram

A A A

B C B

h g h

t

idB

f

,

which means that h is a retract of g.

Lemma 4.2.10. Let (L,R) be a WFS on C . Then both L and R are closed under retracts.
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Proof. For simplicity, let us just show that L is closed under retracts. To this end, let f and g be
as in (†) and suppose that g ∈ L. We must show that any commutative square of the form

A X

B Y

f j

where j ∈ R has a lift B → X. The commutative diagram

C A X

D B Y

g f j

must have a lift t : D → X since g ∈ L by assumption. Therefore, the composite

A
f−→ B −→ D

t−→ X

is a lift for the expanded commutative diagram

A C A X

B D B Y

f g f j .

It follows easily that the same composite is a lift for our original square. This means that f ∈ L, as
desired.

Corollary 4.2.11. Let (C , F ib, Cof,W ) be a model category. The classes Fib, Cof , W ∩Fib, and
W ∩Cof are closed under retracts.

Corollary 4.2.12. The class W is closed under retracts.30

Proof. Let f and g be as in (†) and suppose that g ∈W . We must show that f ∈W .

Step 1: Assume that f is a fibration. We can factor g as a cofibration g1 : C → D′ followed by a trivial
fibration g2 : D′ → D. As W satisfies two-out-of-three, g1 is actually a trivial cofibration.
Thus, the commutative diagram

C A

D′ D B

g1 f

g2

30[17, Lemma 2.4].

73



admits a lift ℓ : D′ → A, which fits into the extended commutative diagram

A C A

A D′ A

B D B

g1

f g2

ℓ

f

.

This implies that the composite A −→ D′ ℓ−→ A equals the identity map idA, so that f is a
retract of g2. By Corollary 4.2.11, f is a trivial fibration, hence a weak equivalence.

Step 2: Let f be arbitrary. We can factor f as a trivial cofibration f1 : A→ B′ followed by a fibration
f2 : B′ → B. By the universal property of pushout squares, we obtain a unique map d such
that the diagram

A C A

B′ E B′

B D B

f1

⌜
c1

g

f1

f2

c2

d f2

(1)

commutes. Likewise, there is a unique map y : E → B′ such that the diagram

A C A

B′ E B′

f1

⌜
c1 f1

c2

idB′

y

(2)

commutes. But f2 ◦ y ◦ c1 equals the composite C −→ A
f1−→ B′ f2−→ B, and f2 ◦ y ◦ c2 equals

the composite B′ f2−→ B −→ D −→ B. Hence f2 ◦ y is a mediating map for our pullback
square. Similarly, one can check that the composite E d−→ D −→ B is a mediating map. But
such a map is unique by the universal property of pushout squares. Therefore, y fits into (1),
so that f1 is a retract of d.
Note that c1 is a weak equivalence thanks to Lemma 4.2.6. Hence d is one as well by the
two-out-of-three property. By Step 1, we see that f2 is also a weak equivalence. Thus, the
composite f = f2 ◦ f1 is a weak equivalence by the two-out-of-three property.

It will be useful to extend our ordinary notion of composition to the transfinite case. Let C be a
cocomplete, locally small category. Let (α,∈) be any ordinal viewed as an order category and let J
be any subclass of Mor(C ).

Definition 4.2.13. An α-sequence of maps in J is an α-shaped diagram F : α→ C such that

(i) F sends the successor morphism β
∈−→ β + 1 to a map in J for each β + 1 ∈ α and
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(ii) for any limit ordinal γ ∈ α, Fγ together with the family of induced maps {Fβ → Fγ | β ∈ γ}
is the colimiting cocone under F• restricted to the full-subdiagram {β | β ∈ γ}; in short, we
have an isomorphism

colim
β∈γ

Fβ
∼=−→ Fγ .

The (transfinite) composition of such a sequence is the induced map F0 → Fα := colimβ∈αFβ .

Note 4.2.14. Let (L,R) be a WFS on C . Suppose that p1, p2 ∈ L and q ∈ R. Consider the lifting
problem

A X

B

C Y

p1

q

p2

y

.

We have a lift
A X

B

C Y

p1

q

p2
y◦p2

x

y

because p1 ∈ L. Since p2 ∈ L, this yields a solution C → X to the lifting problem (x, y). This
is a solution to our original lifting problem. This proves that L (dually, R) is closed under finite
composition. By the universal property of colimits, it follows easily that L is closed under transfinite
compositions as well.

Remark 4.2.15. Note 4.2.14, Lemma 4.2.10, and Lemma 4.2.6 together show that for any class M
of maps in C , the class of all maps in C with the left lifting property against M is saturated.

Proposition 4.2.16. Consider a set {gs}s∈S of objects in the arrow category Arr(C ). The coproduct∐
s∈S gs arises as a transfinite composite of pushouts of the gs.31

Definition 4.2.17. The class cell(J) of relative J-cell complexes consists of all maps in C arising
as transfinite composites of pushouts of elements of J .

Example 4.2.18. Let C = Top, which is cocomplete because it has all coproducts and coequalizers,
and let J consist of all Hurewicz cofibrations, including all inclusions of subcomplexes into CW-
complexes. Let X−1 = ∅ and consider any CW-complex Y :=

⋃
n≥−1 Xn with attaching maps{

φα : Sn−1 → Xn−1 | α ∈ An
}

. Then we have a pushout square

∐
α∈An

Sn−1 Xn−1

∐
α∈An

Dn Xn
⌜

(φα)α∈An

31[9, Proposition 10.2.7].
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for each n ≥ 0, and Y is precisely the colimit of the induced diagram

X−1 X0 X1 X2 · · · .

This means that the map ∅ ↪→ Y is a relative J-complex. In this case, we call Y simply a J-cell
complex, thereby recovering our usual notion of a cell complex.

Suppose that κ is a cardinal and F : κ → C is a functor. The colimit of such a functor is called a
κ-sequential colimit. Further, if F satisfies condition (i) of Definition 4.2.13, then its colimit is called
a κ-sequential colimit relative to J .
More generally, if κ is regular and A is a poset such that any subset B ⊂ A with cardinality < κ has
an upper bound in A, then we call A a κ-directed set and the colimit of any A-shaped diagram D a
κ-directed colimit. In this case, if every morphism in D belongs to J , then we call such a colimit a
κ-directed colimit relative to J .
Definition 4.2.19.

1. An object X in C is κ-compact relative to J if for any regular cardinal λ ≥ κ, the covariant
functor HomC (X,−) preserves λ-directed colimits relative to J , specifically, the set map

colim
β∈λ

HomC (X,Fβ)
∼=−→ HomC

(
X, colim

β∈λ
Fβ

)
[fβ : X → Fβ ] 7→

(
X

fβ−→ Fβ → colim
β∈λ

Fβ

)
is an isomorphism.
We say that X is small relative to J if it is κ-compact relative to J for some cardinal κ.
We say that X is small if it is small relative to Mor(C ).

2. We say that C is locally presentable if there is a regular cardinal λ along with a set S of
λ-compact objects of C such that every object in C arises as a λ-directed colimit of a diagram
with objects in S.

Note that if X is κ-compact relative to J , then any map X → colimβ∈λFβ factors through one of
the maps iβ

X colimβ∈λFβ

Fβ

iβ

of the colimiting cocone so that any other such map X → Fβ′ with β < β′ is precisely the composite
X → Fβ → Fβ′ .

Lemma 4.2.20. Let κ be any infinite regular cardinal. Then any finite simplicial set (Defini-
tion 4.1.4) is κ-compact.32

Proof. Let K be a finite simplicial set and let D : κ → sSet be a κ-sequence. We must show that
the canonical set map

colim
β∈κ

HomsSet(K,Dβ)→ HomsSet

(
K, colim

β∈κ
Dβ

)
32[12, Lemma 3.1.2].
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is bijective.

To see that it is injective, suppose that we have equal simplicial maps

K
f1−→ Dβ −→ colim

β∈κ
Dβ

K
f2−→ Dβ −→ colim

β∈κ
Dβ .

Since K is finite, there is some ordinal β < α < κ such that

D(β → α) ◦ f1 ↾∆Knondeg= D(β → α) ◦ f2 ↾∆Knondeg

where ∆Knondeg denotes the category of non-degenerate simplices ∆[n]→ K in K. By Lemma 4.1.3,
it follows easily that

D(β → α) ◦ f1 ↾∆Knondeg= D(β → α) ◦ f2 ↾∆Knondeg ,

so that [f1] = [f2] in colimβ∈κ HomsSet(K,Dβ), as desired.

To see that our canonical function is surjective, consider any simplicial map g : K → colimβ∈κDβ .
For every integer n ≥ 0 and every non-degenerate n-simplex x in K, there exists an ordinal αx ∈ κ
along with an n-simplex yx in Dαx

such that gn(x) = (iαx
)n(yx). Since K is finite, we may take

µ := max{αz | z is a non-degenerate simplex in K}

to form a levelwise set map h : ∆Knondeg → Dµ such that iµ ◦ h = g ↾∆Knondeg . Using Lemma 4.1.3,
we can extend h to a levelwise set map h′ : K → Dµ that both commutes with all degeneracy
operators and satisfies iµ ◦ h′ = g.

Now, let x be a non-degenerate n-simplex x in K. For any integer 0 ≤ i ≤ n+ 1, we have that

iµ
(
h′
n−1dix

)
= gn−1dix = dignx = diiµh

′
nx = iµ(dih′

nx)

Hence [dih′
nx] =

[
h′
n−1dix

]
in the quotient set colimβ∈κ(Dβ)n. This means that

D(µ→ α(x, i))n(dih′
nx) = D(µ→ α(x, i))n(h′

n−1dix)

for some ordinal µ < α(x, i) < κ. As K is finite, we can take

µ′ := max{α(x, i) | x is a non-degnerate simplex in K, 0 ≤ i ≤ n+ 1}

to form a levelwise set map h′′ : K → Xµ′ such that

(a) iµ′ ◦ h′′ = g,

(b) h′′ commutes with all degeneracy operators, and

(c) h′′ ↾∆Knondeg commutes with all face operators.

By applying Lemma 4.1.3 to (c), we see that h′′ commutes with all face operators as well. Thanks
to the simplicial identities, this means that h′′ is a simplicial map. By condition (a), this completes
our proof.
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Lemma 4.2.21. Let κ be a regular cardinal and A be a κ-directed set. Let D be a small category.
Let B be a cocomplete, locally small category and E be a finite category.

(a) Any representable functor HomD(−, C) : Dop → Set is κ-compact.

(b) Let F : E → B be a diagram where F (e) is a κ-compact object for each e ∈ Ob E . Then
colimeFe is also a κ-compact object.

Proof.

(a) Let D : A→ [Dop,Set] be any diagram. Using the Yoneda lemma twice, we obtain a chain of
natural isomorphsisms

Hom
D̂

(
HomD(−, X), colim

a
Da

)
∼=
(

colim
a

Da

)
(X)

∼= colim
a

Da(X)
∼= colim

a
Hom

D̂
(HomD(−, X), Da).

(b) Let D′ : A → B be any diagram. It is well-known that κ-directed colimits commute with
finite limits in Set. Since the bifunctor HomB(−,−) is continuous in each variable, it follows
that

HomB

(
colim
e

Fe, colim
a

D′
a

)
∼= lim

e
HomB

(
Fe, colim

a
D′
a

)
∼= lim

e
colim
a

HomB(Fe, D′
a)

∼= colim
a

lim
e

HomB(Fe, D′
a)

∼= colim
a

HomB

(
colim
e

Fe, D
′
a

)
.

Corollary 4.2.22. If D is a small category, then the presheaf category [Dop,Set] is locally pre-
sentable.

Proof sketch. Thanks to Theorem C.0.8, it suffices to show that any small colimit of representable
presheaves Dop → Set arises as an ℵ0-directed colimit of a diagram with objects in a set S of
ℵ0-compact objects of [Dop,Set]. To this end, take S to be the full subcategory D̂fp of [Dop,Set]
on the class of all ℵ0-compact objects.

Let F : I → [Dop,Set] be any small diagram of representable presheaves. Consider the poset
(F ,⊂) of all finite full subcategories of I . Note that F is an ℵ0-directed set. It can be shown that

colimF = colim
T∈F

colim
t∈T

Ft.

By Lemma 4.2.21, colimtFt belongs to D̂fp for every T ∈ F .

It remains to show that D̂fp is small. Since D is small by hypothesis, there are only small many
representable presheaves Dop → Set. Therefore, there are only small many finite colimits of rep-
resentable presheaves. Let X : Dop → Set be any ℵ0-compact presheaf. It can be shown that X

78



arises as an ℵ0-directed colimit of finite colimits of representable presheaves: X
∼=−→ colima∈AGa.

As X is ℵ0-compact, this yields a commutative triangle

X colimaGa

Ga

∼=

for some a ∈ A. Here, the map X → Ga must be monic, so that X is a subpresheaf of Ga. This shows
that all ℵ0-compact presheaves are subpresheaves of finite colimits of representable presheaves. This
completes our proof.

Lemma 4.2.23 (Quillen’s small object argument). Suppose that J permits the small object
argument, i.e., for any f ∈ J , the object dom(f) is small relative to cell(J). Then any map in C

can be factored as a map in cell(J) followed by a map in rlp(J).33

Proof. Let z : X0 → Y be a map in C . Consider the set

L0 :=


Af X0

Bf Y

f z | f ∈ J


of lifting problems in C . The universal property of coproducts yields a map

∐
f∈J f → z in the arrow

category Arr(C ). In particular, we have universal morphisms
∐
f∈J Af → X0 and

∐
f∈J Bf → Y .

Form the pushout square ∐
f∈J Af X0

∐
f∈J Bf X1

(f)f∈J

⌜
y1 (A)

together with the unique mediating map

X0

∐
f∈J Bf X1

Y

y1
p0:=z

p1

. (B)

Note that y1 ∈ cell(J) by Proposition 4.2.16. In general, for any successor ordinal β ≡ α+1, suppose
that we have constructed a triple

(yβ : Xα → Xβ , pα : Xα → Y, pβ : Xβ → Y )

of maps fitting into a diagram like (B). Then repeat our construction of (y1, p0, p1) with p0 replaced
by pβ to obtain a new triple (yβ+1, pβ , pβ+1) of maps fitting into (B). Now, choose the least regular

33[9, Proposition 10.5.16].
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cardinal κ such that for any f ∈ J , dom(f) is κ-compact relative to cell(J). For any limit ordinal
γ, suppose that we have constructed a cocone under a γ-sequence

X0 X1 · · · Xα Xα+1 · · ·

Y

y1

p0

p1

yγ+1

pα

pα+1

of maps in cell(J). Take the transfinite composition y : X0 → Xγ of this sequence. By transfinite
induction, we now have defined a κ-sequence

X0 X1 · · · Xγ Xγ+1 · · ·y1 yα+1 (C)

of maps in cell(J). The universal property of colimits yields a map pγ : Xγ → Y fitting into the
cocone

X0 X1 · · · Xγ Xγ+1 · · ·

Y

y1

p0

p1

yα+1

pγ

pγ+1

.

Now, take the transfinite composition x : X0 → Xκ of (C). We see that the diagram

X0

X1 Xκ Y

y1
x

p1

pκ

commutes where pκ is induced by the universal property of colimits. Therefore, z = p1 ◦ y1 = pκ ◦x.

It remains to show that pκ ∈ rlp(J). To this end, let

U Xκ

V Y

h pκ

be a commutative square with h ∈ J . We must exhibit a lift V → Xκ. Since U is κ-compact, the
map U → Xκ factors as U → Xϵ → Xκ for some ϵ ∈ κ. In light of (A), we get a commutative
diagram

U Xϵ Xκ

Xϵ+1 Y

V

h

yϵ+1 pκ

and thus our desired lift.
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Definition 4.2.24 (Cofibrantly generated). A model category (C , F ib, Cof,W ) is cofibrantly
generated if it comes equipped with a pair (J,K) of sets of maps in C such that

(i) ret(cell(J)) = Cof ,

(ii) ret(cell(K)) = W ∩Cof , and

(iii) both J and K permit the small object argument.

In this case, we call elements of J generating cofibrations and elements of K generating trivial
cofibrations.

Lemma 4.2.25. Let (C , J,K) be a cofibrantly generated model category. Then

(a) ret(cell(J)) = llp(rlp(J)), and

(b) ret(cell(K)) = llp(rlp(K)).

Proof. For simplicity, let us just prove (a). Since J ⊂ llp(rlp(J)), the fact that

ret(cell(J)) ⊂ llp(rlp(J))

follows from Lemma 4.2.10 along with Lemma 4.2.8 and Note 4.2.14.
For the reverse inclusion, let f ∈ llp(rlp(J)). By Lemma 4.2.23, we can factor f as

A B C
f1 f2

such that f1 ∈ cell(J) and f2 ∈ rlp(J). Hence f has the right lifting property against f2. By
Lemma 4.2.9, we have that f is a retract of f1. It follows that f ∈ ret(cell(J)).

Lemma 4.2.25 immediately implies that Cof = rlp(K) and W ∩Fib = rlp(J).

Our next notion will serve as a noteworthy generalization of sSet equipped with its classical model
structure.

Definition 4.2.26. Let (C , F ib, Cof,W ) be a model category

1. We say that C is a combinatorial model category if it is locally presentable as a category and
cofibrantly generated as a model category.

2. We say that C is a type-theoretic model category if it is locally cartesian closed as a category
and proper as a model category and Cof consists of all monomorphisms in C .

4.3 Classical model structure on sSet
The classical model structure on sSet is due to Quillen and consists of

• Kan fibrations as fibrations,

• monomorphisms as cofibrations, and

• weak homotopy equivalences as weak equivalences.

Notation. We shall write sSetQuillen for the category sSet equipped with this model structure
(FibSS, CofSS,W SS).
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Note 4.3.1. Every object of sSetQuillen is cofibrant because the empty map ∅ → X is trivially
levelwise injective for any simplicial set X.
In particular, ∆[n] is cofibrant. Therefore, for any trivial fibration p : X → Y of simplicial sets, we
can find a diagonal fill-in of the form

∅ X

∆[n] Y

p .

In terms of the Yoneda lemma, this means that the preimage p−1
n (y) is nonempty for any n-simplex

y in Y . In other words, every trivial fibration is levelwise surjective.

In the interest of space, we shall only partially verify that sSetQuillen is, indeed, a model category
as well as cofibrantly generated and proper.

Recall the class A of anodyne extensions (Definition 4.1.17) and let J denote the saturated class
generated by the set

B := {∂∆[n] ↪→ ∆[n] | n ≥ 0}

of canonical inclusions, i.e., J = ret(cell(B)).

Lemma 4.3.2. A map in sSetQuillen is a cofibration if and only if it belongs to J .

Proof.
(⇐=) It is clear that every element of B is a levelwise injection, i.e., a monomorphism. One can
readily check that the class of all levelwise injections is closed under pushouts, transfinite composi-
tions, and retracts. For example, suppose that a simplicial map g : X ′ → Y ′ is a levelwise injection
and that f : X → Y is a retract of g. Then we have a commutative diagram of the form

X X ′ X

Y Y ′ Y

f

p1

idX

g f

q1

idY

.

Recall that a set map is injective if and only if it has a left inverse. Thus, g ◦ p1 = q1 ◦ f is levelwise
injective as the composite of two levelwise injective maps. Hence f must be levelwise injective, as
desired.
It follows that any element of J belongs to CofSS.

(=⇒) Suppose that f0 : X0 → Y is a monomorphism. By induction, let us construct an ω-sequence
X• of pushouts of coproducts of maps in B along with a sequence (fn : Xn → Y )n≥0 of monomor-
phisms such that fn ↾skn−1(Xn) is an isomorphism skn−1(Xn)

∼=−→ skn−1(Y ) for each n ≥ 1. Let
n ∈ Z≥1 and suppose that we have constructed such an Xn and fn : Xn → Y . Let Sn denote the
category of all n-simplices ∆[n] → Y in Y that are not in im(fn). Note that all objects of Sn are
non-degenerate.

82



Claim. For each s ∈ ObSn, the map s ↾∂∆[n]: ∂∆[n]→ Y factors as

∂∆[n] Xn Ys̃ fn

for some unique map s̃.

Proof. Notice that the non-degenerate k-simplices in ∂∆[n] are precisely the non-identity monomor-
phisms in ∆ of the form [k]→ [n]. This means that ∂∆[n] ∼= skn−1(∂∆[n]). Moreover, fn ↾skn−1(Xn)

is an isomorphism skn−1(Xn)
∼=−→ skn−1(Y ) by assumption. This induces an isomorphism s′ :

∂∆[n]
∼=−→ skn−1(Xn). Now, take s̃ to be the composite

∂∆[n] s′

−→ skn−1(Xn) i
↪−→ Xn,

which must be unique since fn is monic.

This provides us with a commutative diagram

∐
s∈Sn

∂∆[n] Xn

∐
s∈Sn

∆[n] Xn+1

Y

∐
s∈Sn

s̃

⌜
fn

∐
s∈Sn

s

fn+1

.

Recall that the Yoneda lemma specifies a natural one-to-one correspondence

y ∈ Yn ←→ ∆[n] y→ Y

where the map y sends the unique non-degenerate n-simplex in ∆[n] to the element y. From this,
we can see that

∐
s∈Sn

s is monic. Since fn is also monic and im(f)∩ im(h) = ∅, it follows that fn+1
is monic. Further, fn+1 ↾skn(Xn) is levelwise surjective by construction. Therefore, fn+1 ↾skn(Xn) is
an isomorphism, completing our induction step.
The transfinite composition of X• is precisely f0. In light of Proposition 4.2.16, f0 belongs to
cell(B) ⊂ J , as desired.

The following property of the geometric realization functor is a nontrivial consequence of all of
Lemma 4.3.2, Theorem 4.1.25, and Lemma 4.1.26.

Theorem 4.3.3 (Quillen). If p : E → X is a Kan fibration, then |p| : |E| → |X| is a (Serre)
fibration of topological spaces.34

34[8, Theorem 10.10].
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Lemma 4.3.4. Any map f : X → Y in sSetQuillen can be factored as

X Y

Z

f

a
b

where a ∈ A and b ∈ FibSS.35

Proof. The follows directly from Lemma 4.2.23 applied to the class{
Λk[n] ↪→ ∆[n] | n ≥ 1, 0 ≤ k ≤ n

}
together with the fact that Λk[n] is small by Lemma 4.2.20.

Corollary 4.3.5. Any map in sSetQuillen with the left lifting property against FibSS is anodyne.

Proof. Suppose that f : X → Y has the left lifting property against Fib. By Lemma 4.3.4, we can
factor f as an anodyne extension a followed by a Kan fibration b. Then we have a diagonal fill-in of
the form

X Z

Y Y

a

f b
t .

Thus, the diagram

X X X

Y Z Y

f b f

t b

commutes, which exhibits f as a retract of b. Since A is saturated, it follows that f ∈ A.

The converse of Corollary 4.3.5 is clear, and thus A equals the class of all Fib-projective morphisms.

Note 4.3.6. Thanks to Lemma 4.3.2, by applying the same argument for Lemma 4.3.4 to the
generating set

{∂∆[n] ↪→ ∆[n] | n ≥ 0}

instead of
{

Λk[n] ↪→ ∆[n] | n ≥ 1, 0 ≤ k ≤ n
}

, we have that any map f : X → Y in sSetQuillen can
be factored as a cofibration followed by a J-injective morphism.

Theorem 4.3.7.

(1) J−inj︸ ︷︷ ︸
J-injective
morphisms

= W SS ∩FibSS.

(2) A = W SS ∩CofSS.

35[13, Theorem 3.1.1].
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Proof.

(1) See [13, Proposition 3.4.1], which is based on a different yet equivalent definition of W SS.

(2) For the inclusion A ⊂ W SS ∩CofSS, see [12, Proposition 3.2.3]. For the reverse inclusion,
suppose that f : X → Y is a trivial cofibration. Apply Lemma 4.3.4 to factor f as

X Y

Z

f

a
b

where a ∈ A and b ∈ FibSS. By Lemma 4.3.8 below, we have that b is a weak equivalence
because both a and f are weak equivalences. Thanks to part (1), it follows that b ∈ J−inj.
Hence there is a lift of the form

X Z

Y Y

a

f b
k .

Then the diagram
X X X

Y Z Y

f a f

k

idY

b

commutes, so that f is a retract of a and thus is anodyne.

In light of Theorem 4.3.7, we now can see that (W SS ∩CofSS, F ibSS) is a WFS on sSet, as required.
Likewise, (CofSS,W SS ∩FibSS) is a WFS on sSet.

Lemma 4.3.8. W SS satisfies two-out-of-three.

Proof. Let W kTop denote the class of all weak homotopy equivalences of k-spaces.

Claim. W kTop satisfies two-out-of-three.

Proof. Consider any commutative triangle

X Y

Z

f

h
g

in kTop. The following two facts are obvious.

• If both f and g belong to W kTop, then so does h.

• If both g and h belong to W kTop, then so does s.
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Finally, suppose that both f and h belong to W kTop. In particular, π0(f) : π0(X) → π0(Y ) is a
bijection. Therefore, for any y ∈ Y , there is some x ∈ X along with a path p from y to f(x). Let n ∈
Z≥1. When n = 1, the mapping [γ] 7→ [p̄ ∗ γ ∗ p] defines an isomorphism p̂ : πn(Y, y)

∼=−→ πn(Y, f(x))
where ∗ denotes concatenation. In this case, we likewise have an isomorphism ˆ̄p : πn(Z, g(f(x)))

∼=−→
πn(Z, g(y)) given by [γ] 7→ [(g ◦ p) ∗ γ ∗ (g ◦ p̄)]. If n > 1, then we can define p̂ by sending any map
s : (In, ∂In) → (Y, y) to a new map sp : (In, ∂In) → (Y, f(x)) given as follows. Shrink the n-cube
In to C :=

[ 1
3 ,

2
3
]n and draw a radial segment ℓt from each point t on ∂In to

( 1
2 ,

1
2 , . . . ,

1
2
)
∈ C.

Re-parameterize s so that it has domain C and then extend it to a map sp on In that equals p on
each segment ℓt.

When n = 1, it is straightforward to check that the composite

πn(Y, y) πn(Y, f(x)) πn(Z, g(f(x))) πn(Z, g(y))p̂ πn(g,f(x)) ˆ̄p

is precisely πn(g, y). This remain true even if n > 1. By functoriality of πn(−,−), the map
πn(g, f(x)) equals the composite πn(h, x)◦πn(f−1, f(x)), which is an isomorphism since both f and
h are weak homotopy equivalences. Therefore, πn(g, y) is an isomorphism.

It is clear that π0(g) is a bijection, and thus g ∈W kTop.

As |−| : sSet→ kTop both preserves and reflects weak homotopy equivalences, it follows that W SS

also satisfies two-out-of-three.

We have established that sSetQuillen is, in fact, a model category.

Theorem 4.3.9. sSetQuillen is cofibrantly generated.

Proof. sSetQuillen satisfies conditions (i) and (ii) of Definition 4.2.24 thanks to Lemma 4.3.2 and
Theorem 4.3.7(2), respectively. It satisfies condition (iii) because every simplicial set is small by an
argument similar to that given for Lemma 4.2.20.

Corollary 4.3.10. sSetQuillen is a combinatorial model category.

Proof. This is an immediate consequence of Theorem 4.3.9 together with Corollary 4.2.22.

Finally, we want to show that sSetQuillen is right proper. For this, the following lemma is useful.

Lemma 4.3.11. The pullback of a weak homotopy equivalence of k-spaces along a Serre fibration
of k-spaces is again a weak homotopy equivalence.

Proof. Consider any pullback square
X ′ X

Y ′ Y

f ′

⌟
w′ w

f

in kTop where f is a Serre fibration and w is weak homotopy equivalence. We must show that w′

is also a weak homotopy equivalence.
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As a pullback of f , f ′ is a fibration with fibers vertically isomorphic to those of f . This yields a
commutative diagram of the form

F X ′ X

F̃ Y ′ Y

∼= w′

f ′

w

f

(∗)

for any two corresponding fibers F and F̃ . By applying the long exact sequence in homotopy for f ′

and for f to the top and bottom row of (∗), respectively, we get a commutative diagram

πn(F, ·) πn(X ′, ·) πn(X, ·)

πn(F̃ , ·) πn(Y ′, ·) πn(Y, ·)

∼= πn(w′,·)

πn(f ′,·)

πn(w,·)

πn(f,·)

for every integer n ≥ 0. But πn(w, ·) is an isomorphism because w is a weak homotopy equivalence.
The short split five lemma now implies that πn(w′, ·) is an isomorphism, as required.

Theorem 4.3.12. sSetQuillen is right proper.

Proof. Consider any pullback square
X ′ X

Y ′ Y

⌟
w′ w

f

in sSet where f ∈ FibSS and w ∈ W SS. We must show that w′ ∈ W SS. To this end, let us gather a
few properties of |−| : sSet→ kTop established thus far.

• |−| preserves pullbacks by Theorem 4.1.13(2).

• |−| sends any Kan fibration to a Serre fibration by Theorem 4.3.3.

• |−| both preserves and reflects all weak homotopy equivalences.

As a result, we have a pullback square

|X ′| |X|

|Y ′| |Y |

⌟|w′| |w|

|f |

in kTop such that |f | is a Serre fibration and |w| is a weak homotopy equivalence. By Lemma 4.3.11,
|w′| is also a weak homotopy equivalence. Thus, w′ ∈W SS.

For any model category (C , F ib, Cof,W ) and x ∈ Ob C , the over category C /x inherits a model
structure from C where a morphism

y z

x

ζ
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in C /x is

• a fibration if and only if ζ ∈ Fib,

• a cofibration if and only if ζ ∈ Cof , and

• a weak equivalence if and only if ζ ∈W .

Note that an object of C /x is fibrant if and only if it belongs to Fib.

Corollary 4.3.13. Let g : X → Y be a simplicial map.

(1) The base change functor g∗ : sSetQuillen /Y → sSetQuillen /X preserves cofibrations.

(2) The dependent product Πg : sSetQuillen /X → sSetQuillen /Y preserves trivial fibrations in
sSetQuillen.

(3) If g is a Kan fibration, then g∗ preserves weak equivalences (hence trivial cofibrations).

(4) If g is a Kan fibration, then Πg preserves Kan fibrations.

Proof.

(1) Let
A B

Y

j

be a cofibration in sSetQuillen /Y , so that j is a monomorphism of simplicial

sets. We have a commutative diagram

g∗A A

g∗B B

X Y

j

g

obtained by the universal property of pullback squares. By definition, g∗ sends j to this dotted
arrow g∗j. Since the upper square must be a pullback and monomorphisms are stable under
pullback, it follows that g∗j is a monomorphism. Hence it is a cofibration in sSetQuillen /X.

Note 4.3.14. The preceding argument with “monomorphism” replaced by “trivial fibration”
shows that g∗ preserves trivial fibrations as well.

(2) Let f : A→ X be a trivial fibration of simplicial sets. We can view this as a trivial fibration

A X

X
f

f

in sSetQuillen /X. We must show that the object Πgf of sSetQuillen /Y is a trivial fibration
in sSetQuillen. By part (1) together with Lemma 4.2.5(a), we deduce that the map Πgf :
Πgf → ΠgidX is a trivial fibration. Since Πg(−) is right adjoint, it preserves the terminal
object idX . Hence the map Πgf coincides with the object Πgf , which is thus a trivial fibration
in sSetQuillen.
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(3) Suppose that g is a Kan fibration. Let
A B

Y

w

be a weak equivalence in sSetQuillen /Y , so

that w is a weak equivalence of simplicial sets. We again have a pasting

g∗A A

g∗B B

X Y

g∗w w

g′

g

of pullback squares. Lemma 4.2.6 implies that g′ is a Kan fibration, and thus g∗w is a weak
equivalence because sSetQuillen is right proper.

(4) This follows from a nearly identical argument to (2).

Remark 4.3.15. It can be shown that any model category where all objects are cofibrant is left
proper. Hence sSetQuillen is also left proper and thus proper.

Global model structure on [C op, sSet]
Let C be a small category. Corollary 4.2.22 and Theorem 4.3.9 together imply that sSetQuillen is
combinatorial. As it turns out, this ensures that the category [C op, sSet] of simplicial presheaves
over C inherits a model structure from sSetQuillen in at least two ways:

(a) The projective model structure [C op, sSet]proj consists of

• levelwise weak equivalences as weak equivalences,
• levelwise fibrations as fibrations, and
• W -projective morphisms as cofibrations.

(b) The injective model structure [C op, sSet]inj consists of

• levelwise weak equivalences as weak equivalences,
• levelwise cofibrations as cofibrations, and
• W -injective morphisms as fibrations.

Each of (a) and (b) is called a global model structure on [C op, sSet]. It is known that [C op, sSet]inj
is both proper and cofibrantly generated, just as sSetQuillen. Therefore, it is also a combinatorial
model category.
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4.4 ∞-Categories
This section sets forth a generalization of sSet that, in some sense, is the right setting for modeling
CDTT, as we shall see in Section 5.2.

Definition 4.4.1. An∞-category is a category enriched over the cartesian monoidal category sSet.

Example 4.4.2.

1. sSet is an ∞-category. Indeed, since sSet is cartesian closed, we have a sequence of natural
isomorphisms

ZY ∼= HomsSet
(
1, ZY

)
∼= HomsSet(1× Y, Z)
∼= HomsSet(Y,Z)

for any simplicial sets Y and Z. This shows that every hom-set for sSet is itself a simplicial
set, as desired.

2. [C op, sSet] is an ∞-category for any small category C . Indeed, this is also cartesian closed as
it is isomorphic to the presheaf category [(C ×∆)op

,Set]. We thus have another sequence of
natural isomorphisms

ZY ∼= Hom[C op,sSet]
(
1, ZY

)
∼= Hom[C op,sSet](1× Y, Z)
∼= Hom[C op,sSet](Y, Z)

for any simplicial presheaves Y and Z over C . Note that any functor of the form G :
(C ×∆)op → Set restricts to the simplicial set given by [n] 7→ G(∗, [n]). Hence ZY and
thus Hom[C op,sSet](Y,Z) may be regarded as simplicial sets, as desired.

Next, suppose that F : K → C and w : K → V are small diagrams enriched over a closed symmetric
monoidal category V . The weighted limit limw F of F with weight w is the object, if it exists, of C

that represents the V -valued presheaf

Hom[K,V ](w,HomC (x, F (−))) : C op → V

naturally in x ∈ Ob C .

Let V = sSet, so that C is an ∞-category. Define the weight w by

k 7→ N(K/k)

where N(−) denotes the nerve of a small category. In this case, we call limw F the homotopy limit
of F , denoted by holimKF .

Definition 4.4.3. Let C be an ∞-category with all finite homotopy limits. We say that C is a
locally cartesian closed (LCC) ∞-category if for every map f : x→ y in C , the homotopy pullback
functor f∗ : C /y → C /x has a right adjoint Πf .
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We also have a variant of locally presentable for ∞-categories, but it requires a lot of machinery to
state.

Definition 4.4.4. Let F : C → D be a functor of ∞-categories (i.e., a sSet-enriched functor). We
say that F is a Dwyer-Kan equivalence if

(i) the functor π0(F ) : π0(C )→ π0(D) (Remark 4.1.20) is essentially surjective and

(ii) for all x, y ∈ Ob C , the map Fx,y : HomC (x, y)→ HomD(F (x), F (y)) is a weak equivalence in
sSetQuillen.

In this case, we write C ≃DK D .

We now want to define a way of forming an∞-category out of a given category with weak equivalences
(C ,W ). To this end, consider a directed graph G := (V,E). The free category FG of G has vertices
of G as objects and lists of the form

(an, fn, an−1, . . . , a1, f1, a0)
n ∈ N, ai ∈ V, a0 ≡ a, an ≡ b

fi is an edge from ai−1 to ai for all 0 < i ≤ n

as morphisms a→ b. Here, composition is given by

(an, fn, an−1, . . . , a1, f1, a0) ◦ (bm, gm, am−1, . . . , b1, g1, b0)

≡

(an, fn, an−1, . . . , a1, f1, a0 = bm, gm, am−1, . . . , b1, g1, b0).

The identity map ida is precisely the empty path ∅ from a to itself.
A reflexive quiver is a quiver equipped with an edge iv from v to itself for each vertex v. Every
small category E may be regarded as a reflexive quiver (Ob E ,Mor(E )). This provides us with two
functors

E : FE −→ E , v 7→ v

δE : FE −→ FFE , v 7→ v.

It can be shown that the induced triple F(E ) := (F (−), ϵ, δ) is a comonad in Cat. This induces a
simplicial category F•E : ∆op → Cat defined on objects by

F(E )n = Fn+1E

with face di : Fk(E )→ Fk−1(E ) and degeneracy si : Fk(E )→ Fk+1(E ) operators given by

F k+1(E ) F k(E )

F k+1(E ) F k+2(E )

F iϵ
F k−i

F iδ
F k−i

,

respectively.
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Let U : Cat→ Set denote the functor given by B 7→ Ob(B). Then the composite functor U ◦ F•E

is the constant simplicial set at Ob E .

Moving to our next piece of machinery, suppose that (E ,W E ) is a category with weak equivalences.
For any arrow f in E , let f̄ denote the reverse of f . Let

W op
E (x, y) =

{
f̄ | f : x→ y, f ∈W E

}
.

Consider the directed graph G with objects of E as vertices, elements of HomE (x, y) as edges x→ y,
and elements of W op

E (x, y) as edges y → x. Now, define ∼ as the smallest equivalence relation on
the set Mor(FG) such that

• for any x ∈ Ob E , (x, idx, x) ∼ (x, ∅, x),

• for any maps f : x→ y and g : y → z in E , (z, g, y, f, x) ∼ (z, g ◦ f, x), and

• for any map f : x→ y in W E , (
x, f̄ , y, f, x

)
∼ (x, idx, x)(

y, f, x, f̄ , y
)
∼ (y, idy, y).

The quotient category E
[
W−1

E

]
:= FG⧸∼ is called the localization of E by W E .

Definition 4.4.5. If C is small, then the (standard) simplicial localization of C is the simplicial
category

F•C
[
F•W

−1] : ∆op → Cat,

where W may be treated as a subcategory of C .36

The composite U ◦ F•C
[
F•W

−1] is again a constant simplicial set.

Proposition 4.4.6. Let T : ∆op → Cat be a functor so that U ◦ T is a constant simplicial set at,
say, S. For any x, y ∈ S and any n ∈ N, let

T (x, y)n = {τ ∈ Mor(Tn) | τ : x→ y}.

(a) The family {T (x, y)n}n≥0 has the structure of a simplicial set T (x, y).

(b) Levelwise composition of T induces a composition operation T (x, y)× T (y, z)→ T (x, z).

(c) The category ⟨T ⟩ with Ob ⟨T ⟩ ≡ S and Hom⟨T ⟩(x, y) ≡ T (x, y) is enriched over sSet.

It follows at once that
LWC :=

〈
F•C

[
F•W

−1]〉
is an ∞-category.

Definition 4.4.7. We say that an ∞-category D is locally presentable if it has a presentation by a
combinatorial simplicial model category A in the sense that D ≃DK LWA .

36[6, Section 4.1].
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Here, by “simplicial model category” we mean a model category C enriched over sSet such that for
every fibration p : X → Y and cofibration i : A→ B in C , the unique mediating map

HomC (B,X)

HomC (B, Y )×HomC (A,Y ) HomC (A,X) HomC (A,X)

HomC (B, Y ) HomC (A, Y )

i∗×p∗

HomC (idB ,p)

HomC (i,idX )

HomC (idA,p)

HomC (i,idY )

is a Kan fibration. Moreover, this map must be a weak equivalence whenever p or i is one.

Finally, let us define a certain kind of locally presentable ∞-category with good structure for mod-
eling not only CDTT but also Univ. (We shall make this feature precise at the end of Section 5.4.)
For this, we need a few auxiliary concepts.

Definition 4.4.8. Let C be an ∞-category with all homotopy pullbacks and all homotopy colimits
of shape D. We say that a D-shaped homotopy colimit hocolimd∈DF (d) in C is universal if for any
homotopy pullback square of the form

Y ×Z (hocolimdF (d)) hocolimdF (d)

Y Z

in C , we have that hocolimd(F (d)×Z Y ) ∼= Y ×Z (hocolimdF (d)).

Definition 4.4.9. Let C be an ∞-category. Let J be a class of morphisms in C closed under
homotopy pullbacks. We say that a map ĴType→ JType is a J-classifier if for any map X → B in
J , there exists a unique homotopy pullback square of the form

X ĴType

B JType

⌟

⌜X⌝

.

Let κ be a cardinal. We say that a map X → Y in C is relatively κ-compact if for any κ-compact
object Y ′ of C and any homotopy pullback square

Z ×Y X X

Z Y

in C , the object X ×Y Z is also κ-compact.
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Terminology.

• If J denotes the class of all morphisms in C , then a J-classifier is called an object classifier.

• If J denotes the class of all monomorphisms in C , then a J-classifier is called a subobject
classifier.

• If κ is a regular cardinal and J denotes the class of all relatively κ-compact morphisms in C ,
then a J-classifier is called a κ-compact-object classifier.

Example 4.4.10. To gain a bit of intuition about J-classifiers, let C = Set. Then the function

T : 1→ {F, T}︸ ︷︷ ︸
1
∐

1

picking out the truth value T is a subobject classifier in C . Indeed, for any inclusion function
S ↪→ B, define ⌜S⌝ : B → {F, T} as the function

χS(b) ≡
{
T b ∈ S
F b /∈ S

.

Definition 4.4.11 (Rezk). We say that an ∞-category C is a Grothendieck ∞-topos if

(i) it is locally presentable,

(ii) has all universal colimits, and

(iii) has a κ-compact-object classifier for all sufficiently large regular cardinals κ.37

5 A simplicial model of HoTT
This section is devoted to examining [14, Sections 2 and 3], which constructs a certain model of
CDTT + Univ in the category sSet of simplicial sets. In Section 5.1 and Section 5.2, we choose
particular universes in our chosen class of presheaf categories and show that they carry all of the
logical structure found in our MLDTT without Univ, respectively. Next, turning out attention to
the univalence axiom, we define in Section 5.3 a simplicial notion of univalence for these models
that is logically equivalent to our type-theoretic notion of univalence. Finally, in Section 5.4, we
prove that our chosen universes are univalent in the simplicial sense and then state a remarkable
generalization of this result.

5.1 Fibrant universes of “small” fibrations
This section recounts [14, Sections 2.1 and 2.2], which defines a class of Kan complexes serving as
universes in sSet both in the sense of Definition 3.3.1 and in the sense of internal universe (p. 46).

For any such Kan complex U , we want to find a simplicial map Û → U acting as a classifier for a
specific class of Kan fibrations in the sense of Definition 4.4.9. To ensure that this class is closed
under the categorical versions of our type-forming operations, we shall take the class of all κ-small

37A precise definition of “sufficiently large” is found in the proof of [15, Proposition 6.1.6.7].
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well-ordered Kan fibrations. Moreover, since dependent types will be interpreted as Kan fibrations,
Û → U must be a Kan fibration to interpret the dependent type x : U ⊢ el(x) type.

Pick any regular cardinal κ.

Definition 5.1.1. Let f : X → Y be a map of simplicial sets.

1. We say that f is well-ordered if it is equipped with a well-ordering of Yx := f−1
n (x) for each

simplex x ∈ Xn.

2. We say that f is κ-small if |Yx| < κ for every simplex x.

Let f : X → Y and g : Z → Y be well-ordered simplicial maps. A morphism f → g is a simplicial
map h : X → Z fitting into a commutative triangle

X Z

Y

h

f
g

such that hn : f−1
n (y)→ g−1

n (y) is order-preserving for every n ∈ N and y ∈ Yn.

Note 5.1.2. Recall that for any two well-ordered sets x and y, there is exactly one isomorphism
of the form x

∼=−→ y. Thus, for any two well-ordered simplicial maps X and Y , there is exactly one
isomorphism of the form X

∼=−→ Y .

Now, the isomorphism class of any κ-small well-ordered map is a proper class. We can, however,
apply Scott’s trick to make this a set. In this case, for any simplicial set X, we have a definable class
Wκ(X) consisting of all isomorphism classes of κ-small well-ordered maps Y → X. In fact, Wκ(X)
is a set. This gives rise to a presheaf

Wκ : sSetop → Set

that sends each simplicial map f : B → A to the pullback action f∗ : Wκ(A) → Wκ(B) on
equivalence classes.

Lemma 5.1.3. For any functor F : J → sSet, Wκ(colimjFj) ∼= limj(Wκ(Fj)).

Proof. Applying Wκ(−) to the colimiting cocone {vj : Fj → colimjFj | j ∈ ObJ} induces a cone
over Wκ(F•) and thus a canonical map

ψ :Wκ

(
colim
j

Fj

)
→ lim

j
(Wκ(Fj))

by the universal property of limits. We want to show that ψ is bijective.

To see that ψ is surjective, let [fj : Yj → Fj ]j∈Ob J be a tuple of equivalence classes in limj(Wκ(Fj)).
For each simplex x ∈ colimj(Fj)n, choose an index jx along with a simplex x̃ ∈ (Fjx)n such that
(vjx)n(x̃) = x. Define the fiber Yx over x as the fiber (Yjx)x̃. For any other such j′

x and x̃′, there is
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some map jx → j′
x in J along with a pullback square

Yjx Yj′
x

Fjx
Fj′

x

fjx

⌟
fj′

x
.

By the pasting law for pullbacks, the total rectangle

(Fjx)x̃ Yjx Yj′
x

∆[n] Fjx
Fj′

x

⌟
fjx

⌟
fj′

x

x̃

is a pullback. Since x̃ = x̃′ in colimjFj , the uniqueness of pullbacks yields an isomorphism

(Fjx
)x̃ ∼=

(
Fj′

x

)
x̃′

of well-ordered sets. Note 5.1.2 now implies that the fiber Yx is defined up to canonical isomorphism.
Thus, we may patch the fj together to form a κ-small well-ordered map f : Y → colimjFj such that

v∗
j f
∼= fj

for each j ∈ Ob J , as desired.

By similar reasoning, we can show that ψ is also injective.

Consider the opposite Yoneda embedding Yop : ∆op → sSetop, from which we can form the simplicial
set

Wκ :=Wκ ◦ Yop : ∆op → Set .

Corollary 5.1.4. The functor Wκ is represented by Wκ.

Proof. For any n ∈ N, the Yoneda lemma implies that

HomsSet(∆[n],Wκ) ∼= (Wκ)n =Wκ(∆[n]).

By Theorem C.0.8, every simplicial set is naturally isomorphic to a small colimit of standard sim-
plices. Moreover, by Lemma 5.1.3, Wκ(−) is continuous, and the hom-functor of any locally small
category is continuous in its first variable. It follows that HomsSet(−,Wκ) and Wκ(−) are isomor-
phic functors, as desired.

As a result, we have a natural isomorphism

Ψ :Wκ(−)
∼=−→ HomsSet(−,Wκ). (Ψ)

Notation.

1. For any simplicial set X and κ-small well-ordered map f : Y → X, let ⌜f⌝ refer to the map
Ψ([f ]) : X →Wκ.

2. Let
[
Ωκ : Ŵκ →Wκ

]
denote the element Ψ−1(idWκ).
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For every κ-small well-ordered map f : Y → X, the map Ψ specifies a commutative square

Wκ(Wκ) HomsSet(Wκ,Wκ)

Wκ(X) HomsSet(X,Wκ)

⌜f⌝∗−

∼=

−◦⌜f⌝

∼=

of sets. By evaluating this square at Ψ−1(idWκ), we see that there exists a unique pullback square
of the form

Y Ŵκ

X Wκ

f
⌟

Ωκ

⌜f⌝

.

This means that Ωκ is a classifier for the class of all κ-small well-ordered maps.

Note 5.1.5. By the axiom of choice, we can choose a well-ordering of each fiber of any κ-small
simplicial map, thereby converting it into a well-ordered map. This map can be expressed as a
pullback of Ωκ. As a result, any κ-small simplicial map can be expressed as a pullback of Ωκ. Such
a pullback square, however, may not be unique, as our choice of well-orderings need not be unique.

We want to isolate the Kan fibrations found in Wκ(−). Formally, consider the subpresheaf

Uκ ↪→Wκ

such that Uκ(X) consists of all κ-small well-ordered Kan fibrations for each simplicial set X. Also,
let

Uκ = Uκ ◦ Yop : ∆op → Set

and consider the pullback square
Ûκ Ŵκ

Uκ Wκ

⌟
pκ Ωκ

.

Proposition 5.1.6. The map pκ : Ûκ → Uκ is a Kan fibration.38

Lemma 5.1.7. Let f : Y → X be a κ-small well-ordered map. Then f is a Kan fibration if and
only if ⌜f⌝ : X →Wκ factors through the inclusion Uκ ↪→Wκ.

Proof.
(=⇒) Suppose that f is a Kan fibration. For any n-simplex x : ∆[n]→ X in X, the pullback

x∗f : ∆[n]×X Y → ∆[n]

is also a Kan fibration by Lemma 4.2.6. Further, this map is κ-small and well-ordered because
im(∆[n]×X Y → Y ) is exactly the fiber of f over x ∈ Xn. Now, by pasting the two pullback

38[14, Lemma 2.1.10].
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squares
∆[n]×X Y Y Ŵκ

∆[n] X Wκ

x∗f f

⌟
Ωκ

x ⌜f⌝

,

we see that ⌜f⌝ ◦ x = ⌜x∗f⌝ as the total rectangle must be a pullback as well. But ⌜x∗f⌝ ∈ (Uκ)n
because x∗f is a Kan fibration. Hence ⌜f⌝ sends each simplex in X to a simplex in Uκ and thus
factors through Uκ ↪→Wκ.

(⇐=) Suppose that ⌜f⌝ factors through Uκ ↪→Wκ. This yields a commutative diagram of the form

Y Ûκ Ŵκ

X Uκ Wκ

f pκ

⌟
Ωκ

⌜f⌝

.

Since the total rectangle is also a pullback, so is the lefthand square. By Proposition 5.1.6 together
with Lemma 4.2.6, we thus have that ⌜f⌝ is a Kan fibration.

Corollary 5.1.8. The functor Uκ is represented by Uκ.

Proof. It follows directly from Lemma 5.1.7 that (Ψ) restricts to an isomorphism

Uκ(−)
∼=−→ HomsSet(−,Uκ).

Consider the pullback square
Y Ŵκ

X Wκ

f
⌟

Ωκ

⌜f⌝

.

from above. If f is a Kan fibration, then by Lemma 5.1.7 we obtain a pasting of pullback squares

Y Ûκ Ŵκ

X Uκ Wκ

f

⌟
pκ

⌟
Ωκ

⌜f⌝

.

This shows that pκ is a classifier for the class of all κ-small well-ordered Kan fibrations. Further,
by the axiom of choice, any κ-small simplicial map can be expressed as a (not necessarily unique)
pullback of pκ.

In this way, Uκ is a universe in the sense of Definition 3.3.1. Any closed type in our model will be
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a fibration of the form · → 1. Hence if we want Uκ (or a smaller copy thereof) to serve also as an
internal universe, we must show that it is fibrant. For this, the following result due to Joyal will be
useful.

Lemma 5.1.9. Let j : A → B be a cofibration and p : C → A be a trivial fibration of simplicial
sets.

(a) There exists a pullback square of the form

C D

A B

p
⌟

p̃

j

where p̃ is a trivial fibration.

(b) If p is κ-small, then p̃ can be made κ-small.

Proof.

(a) Let p̃ = Πjp. This a trivial fibration by Corollary 4.3.13(2). It remains to show that j∗Πjp ∼= p.
To this end, recall the adjoint triple

Σj(−) ⊣ j∗(−) ⊣ Πj(−).

This induces an adjunction
j∗ ◦ Σj ⊣ j∗ ◦Πj .

Since adjoints are unique up to isomorphism and idsSet /A is right adjoint to itself, it suffices
to exhibit a natural isomorphism j∗ ◦ Σj

∼=−→ idsSet /A. For any simplicial map h : E → A, it
is easy to check that the square

E E

A B

h j◦h

j

is a pullback because j is monic. Hence j∗Σjh ∼= h, from which we can define our desired
isomorphism.

(b) Let x : ∆[n]→ B be any simplex in B. Note that

(Πjp)x ∼= HomsSet /B(x,Πjp) ∼= HomsSet /A(j∗x, p). (∗)

Note that j∗∆[n] is a simplicial subset of ∆[n] because monomorphisms are stable under pull-
back. Now, recall that the non-degenerate k-simplices in ∆[n] are precisely the monomorphisms
belonging to ∆([k], [n]). In particular, ∆[n] is finite (Definition 4.1.4), and thus so is j∗∆[n].
Moreover, Lemma 4.1.3 implies that any simplicial map X → Y is determined by its action
on all non-degenerates simplices in X. We thus can find an embedding of HomsSet /A(j∗x, p)
into the finite product

P :=
∏

z non-deg.
simplex in
j∗∆[n]

p−1(j∗x(z))
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of fibers of p. Assuming that p is κ-small, we have that |P | < κ by basic cardinal arithmetic.
In this case, it follows that Πjp is κ-small by (∗).

Theorem 5.1.10. The simplicial set Uκ is a Kan complex.

Proof. Let n ∈ Z≥1. For each integer 0 ≤ k ≤ n, we must find a filler of the form

Λk[n] Uκ

∆[n]

⌜q⌝

.

Thanks to Corollary 5.1.8, the map ⌜q⌝ naturally corresponds to a κ-small well-ordered map q :
Z → Λk[n]. It suffices to find a pullback square of the form

Z Z ′

Λk[n] ∆[n]

q
⌟

q′

such that q′ is a κ-small well-ordered Kan fibration and the map Z → Z ′ induces an order-preserving
function q−1(x)→ (q′)−1(x) for any simplex x in Λk[n]. For, in this case, we can form a pasting of
two pullback squares

Z Z ′ Uκ

Λk[n] ∆[n] Ûκ

q

⌟
q′
⌟

pκ

⌜q′⌝

where the lower composite must equal ⌜q⌝ because pκ is a classifier. Hence ⌜q′⌝ would serve as our
desired filler.

By Lemma 4.1.26, we can factor q as a trivial fibration qt : Z →W followed by a minimal fibration
qm : W → Λk[n].

Claim. Both qt and qm are κ-small.

Proof. First, to see that qt is κ-small, note that

q−1
t (w) ⊆ (qm ◦ qt)−1(qm(w)) = q−1(qm(w))

for any simplex w in W . As q is κ-small, it follows that qt is also κ-small.

Next, to see that qm is κ-small, note that qt is levelwise surjective as a trivial fibration. Therefore,
for any simplex ℓ in Λk[n], every element of (qm)−1(ℓ) has the form qt(z) for some simplex z in
Z. Then q sends z to ℓ, which shows that the function q−1(ℓ) → (qm)−1(ℓ) given by x 7→ qt(x) is
surjective. Hence qm is κ-small.
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By Theorem 4.1.32, the map qm is isomorphic to the trivial bundle F ×Λk[n] π2−→ Λk[n]. This yields
a pullback square

W F ×∆[n]

Λk[n] ∆[n]

qm

⌟
π∆[n] .

Since qm is κ-small, so is the trivial bundle π∆[n]. Further, since qt is κ-small, Lemma 5.1.9 provides
us with a κ-small Kan fibration q̃t fitting into a commutative diagram

Z Z ′

W F ×∆[n]

Λk[n] ∆[n]

qt

q

⌟
q̃t

qm

⌟
π∆[n]

.

Take q′ to be π∆[n] ◦ q̃t, which is a Kan fibration as the composite of two fibrations. To see that q′

is κ-small, observe that for any simplex z in ∆[n], we have that

(q′)−1(z) =
(
π∆[n] ◦ q̃t

)−1(z) =
⋃

w∈(π∆[n])−1(z)

(q̃t)−1(w).

Since κ is regular, it follows that
∣∣∣(q′)−1(z)

∣∣∣ < κ. Thus, q′ is κ-small.

Finally, we must extend the well-ordering of q to a well-ordering of q′. This is possible because any
well-founded binary relation R on a set Q can be extended to a well-ordering of Q. Indeed, consider
the rank function rankR : Q→ α, defined inductively by

rankR(x) = sup {rankR(y) + 1 | yRx},

where α is an ordinal. By induction on rankR together with the axiom of choice, we can extend R

to a well-ordering of Q.

5.2 Modeling MLDTT without Univ
Notation. Continue to let T denote our MLDTT without Univ.

Assume now that κ is inaccessible.

In this section, we verify that Uκ has sufficient logical structure to induce a model of T via Theo-
rem 3.4.5. In the interest of space, we shall describe just the Π- and Id-structure on Uκ along with
smaller copies of Uκ serving as nested universes in Uκ. See [14, Theorem 2.3.4] for sketches of the
remaining cases.

Recall from page 44 that an Π-structure on Uκ is precisely a map

Π̄ : Π(Uκ)→ Uκ
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together with an isomorphism Π̄∗pκ ∼= Παgβg. By Corollary 5.1.8, both αg and βg are κ-small Kan
fibrations.

Proposition 5.2.1. Let h : X → Y and f : Y → Z be κ-small Kan fibrations. Then the dependent
product Πfh is a κ-small Kan fibration.

Proof. Corollary 4.3.13(4) immediately implies that Πfh is a Kan fibration. To see that it is κ-small,
let n ∈ N and notice from (∗) that

(Πfh)x ∼= HomsSet /Y (f∗x, h)

for any simplex x : ∆[n]→ Z in Z. The cardinality of HomsSet /Y (f∗x, h) is at most the cardinality
of the set S of all functions

f−1
n (x)→ (f ◦ h)−1

n (x).

As κ is regular, both f−1
n (x) and (f ◦ h)−1

n (x) have cardinality < κ. Hence∣∣(Πfh)x
∣∣ ≤ |S| < κ

because κ is inaccessible.

We have seen that any κ-small simplicial map can be expressed as a pullback of pκ. Thus, by
Proposition 5.2.1, the dependent product Παg

βg can be expressed as a pullback Π̄∗pκ, as required.

Next, we want to define an Id-structure on Uκ. For any Kan fibration p : E → B, the fibered path
space object of p is the pullback

ρB(E) E∆[1]

B B∆[1]

⌟
p∆[1]

cB

of the exponential object E∆[1] along the constant path map. We have a unique mediating map

E

ρB(E) E∆[1]

B B∆[1]

p

cE

rp

p∆[1]

cB

.

We also have composites

sp : ρB(E)→ E∆[1] ev0−−→ E

tp : ρB(E)→ E∆[1] ev1−−→ E.

Proposition 5.2.2. The diagonal map ∆p : E → E ×B E factors as

E ρB(E) E ×B E
rp (sp,tp)

over B such that
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• rp is a trivial cofibration,

• (sp, tp) is a Kan fibration, and

• rp is stably orthogonal to (sp, tp) over B.39

If p : E → B is κ-small, then so is (sp, tp) because rp is monic. In this case, there is a pullback
square of the form

ρB(E) E

E ×B E B

(sp,tp)
⌟ p

Idp

.

Specifically, the Kan fibration pκ is κ-small. Thus, we may take
(
Idpκ

, rpκ

)
as our Id-structure.

Finally, to define a U-structure on Uκ, suppose that λ < κ is another inaccessible cardinal. Then
Uλ is again a Kan complex. Also, the unique map Uλ → 1 is κ-small, i.e., the set

(Uβ)n = Uλ(∆[n])

has cardinality < κ for each n ∈ N. Indeed, each isomorphism class [f : X → ∆[n]] ∈ Uλ(∆[n]) is
determined by

(i) a family of isomorphism classes
[
f−1(z)

]
over ∆[n] indexed by the countable set of all simplices

z in ∆[n] together with

(ii) all of the face and degeneracy operators between the total spaces of k-simplices (k ∈ N) induced
by the fibers of f .

Since every well-ordered set is isomorphic to exactly one ordinal, there are exactly λ many isomor-
phism classes of well-ordered sets of size < λ. Hence there are exactly ℵ0 · λ = λ many possible
families of isomorphism classes as in (i). Moreover, the domain and codomain of any face or degen-
eracy operator as in (ii) are of size < λ. Thus, there are exactly λ many ways of defining such an
operator because λ is inaccessible. Also, there are countably many face and degeneracy operators to
define in total. Therefore, there are exactly ℵ0 · λ = λ many possible face and degeneracy operators
as in (ii). We can conclude that

|Uλ(∆[n])| ≤ λ · λ = λ < κ.

We thus have a unique pullback square of the form

Uλ Ûκ

1 Uκ

⌟
pκ

uλ

as well as an inclusion map
ι : Uλ → Uκ, [f ] 7→ [f ].

Finally, we take the pair (uλ, ι) as our U-structure.
39[14, Proposition 2.3.3].
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Generic structure for modeling CDTT
We can check that any LCCC C carries all data of a T-structure (forgetting its contextual-categorical
structure) aside from an Id-type structure (p. 35). It is possible, however, to almost correctly
interpret extensional identity types (Remark 2.1.1) in C . Indeed, suppose that we can derive

Γ ⊢ A type

Γ ⊢ a : A
Γ ⊢ b : A

in T. Then the well-formed identity type Γ ⊢ IdA(a, b) type is interpreted as the equalizer in the
diagram

JΓ, z : IdA(a, b)K
pIdA(a,b)

JΓK
JaK−−→−−→
JbK

JΓ, x : AK.

As a result, the canonical projection pIdA(a,b) must be monic. Further, we interpret the canonical
term Γ ⊢ refla : IdA(a, a) as the morphism JΓK→ JΓ, z : IdA(a, b)K induced by the universal property
of equalizers, i.e., fitting into a commutative triangle

JΓ, z : IdA(a, a)K JΓK

JΓK

pIdA(a,a)

idJΓK
JreflaK .

In general, our interpretation function J−K sends any well-formed term of type IdA(a, b) to a section
of pIdA(a,b). Since pIdA(a,b) is monic, it follows that C satisfies UIP. To see that it satisfies ERR,
recall that any morphism that is both a monomorphism and a split epimorphism is an isomorphism.
Therefore, pIdA(a,b) is an isomorphism, so that JaK = JbK, as desired.

The reason that such an interpretation is almost correct is that endowing C with a strictly functorial
pullback operation may be impossible. One can, however, convert C into an equivalent category
with attributes, which has such an operation [10]. In this sense, every LCCC admits a model of
extensional CDTT.

Moreover, thanks to [7, Theorem 7.10], we know that every locally presentable LCC ∞-category C

has a presentation by a type-theoretic model category C .40 Consider the full subcategory C f of C

on all fibrant objects.

Proposition 5.2.3. The class Fib of all fibrations in C f is both closed and factorizing. (See
Section 3.5.)

Proof. Note that Fib is factorizing because C is a model category. For the same reason, Fib satisfies
condition (b) of Definition 3.5.5. It also satisfies condition (c) because all objects of C f are fibrant.

To see that Fib satisfies condition (d) of Definition 3.5.5, note that Fib is closed under pullbacks
and that the pullback of a fibrant object in any model category is again fibrant. Thus, for every map
f : A→ B in C f , we have a base change functor f∗ : C f/B → C f/A preserving all fibrations. Since
C is locally cartesian closed by definition of type-theoretic model category, it follows that f∗ has a

40It is hoped that, eventually, we can drop the hypothesis that C is locally presentable.
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right adjoint Πf . We must show that Πf preserves fibrations. But f∗ preserves trivial cofibrations
by Lemma 4.2.5.

It remains to show that Fib satisfies condition (e) of Definition 3.5.5. By Corollary 4.3.13(4) together
with Proposition C.0.15 and the fact that fibrations are stable under pullback, we have that the
exponential of two fibrations over C ∈ Ob C f is again a fibration. It is easy to see that this remains
the exponential in Fib(C). Hence the inclusion functor Fib(C) ↪→ C f/C preserves exponentials.

Assuming Conjecture 3.2.13, Theorem 3.5.7 directly implies that C f models T (without the universe
type). In this sense, every locally presentable LCC ∞-category C can be presented by a model of
intensional CDTT. In particular, [D , sSet] has such a presentation for any small category D .

5.3 The simplicial notion of univalence
At this point, let us turn to proving that the induced contextual category sSetUκ

(p. 42) satisfies the
univalence axiom. To begin with, we define a simplicial notion of univalence that will be equivalent
to our type-theoretic one.

Let p1 : E1 → B and p2 : E2 → B be Kan fibrations. The over category sSet /B is cartesian closed
by Theorem C.0.17. Thus, we may form the exponential

pp1
2 : homB(E1, E2)→ B

of p1 and p2 in sSet /B.

Note 5.3.1. The map pp1
2 is a Kan fibration.

By adjunction, any map
X homB(E1, E2)

B

f
p

p1
2

over B naturally corresponds to a map f∗E1 → E2 over B. This, in turn, naturally corresponds to
a map f∗E1 → f∗E2 fitting into a commutative diagram

f∗E1

f∗E2 E2

X B

π p2

f

.

By the Yoneda lemma, it follows that an n-simplex x in homB(E1, E2) is precisely a pair of maps

(x : ∆[n]→ B, sx : x∗E1 → x∗E2).

Lemma 5.3.2. Let g : E1 → E2 be a weak equivalence in sSet /B and let h : B′ → B be a simplicial
map. Then the map h∗g : h∗E1 → h∗E2 is a weak equivalence in sSet /B′.
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Proof. By Note 4.3.14, the base change functor h∗ preserves trivial fibrations. Therefore, Lemma 4.2.7
implies that h∗ preserves weak equivalences of fibrant objects. In particular, h∗g is a weak equiva-
lence.

Proposition 5.3.3. Let g : E1 → E2 be a map over B. If every connected component of B has a
vertex v : ∆[0] → B such that the induced map v∗g : v∗E1 → v∗E2 of fibers is a weak equivalence,
then g is also a weak equivalence.41

Consider any map f : [n] → [m] in ∆ along with induced map Y(f) : ∆[n] → ∆[m]. Then the
function

homB(E1, E2)(f) : homB(E1, E2)m → homB(E1, E2)n

is given by

(x : ∆[m]→ B, sx : x∗E1 → x∗E2) 7→
(
x ◦ Y(f), sx◦Y(f) : (x ◦ Y(f))∗

E1 → (x ◦ Y(f))∗
E2
)
.

If sx is a weak equivalence, then so is

sx◦Y(f) : Y(f)∗(x∗E1)→ Y(f)∗(x∗E2).

by Lemma 5.3.2. Thus, we have a simplicial subset eqB(E1, E2) ⊂ homB(E1, E2) whose n-simplices
are exactly pairs of maps

(x : ∆[n]→ B, sx : x∗E1 → x∗E2)
sx is a weak equivalence.

Now, consider any map

(f : X → B, sf : f∗E1 → f∗E2) : X → homB(E1, E2)

over B. This sends any x ∈ Xn to the n-simplex (f ◦ x, x∗sf ) in homB(E1, E2). If x∗sf is a weak
equivalence for every simplex x in X, then sf must be a weak equivalence by Proposition 5.3.3.
Conversely, if sf is a weak equivalence, then any such map x∗sf must be a weak equivalence because
the base change functor x∗ preserves weak equivalences of fibrant objects. In conclusion, the map
sf is a weak equivalence if and only if (f, sf ) factors through eqB(E1, E2) ↪→ homB(E1, E2). As a
result, any map X → eqB(E1, E2) corresponds naturally to a pair of maps

(f : X → B, sf : f∗E1 → f∗E2) (⋆)
sf is a weak equivalence.

Lemma 5.3.4. The restriction pp1
2 : eqB(E1, E2)→ B is a Kan fibration.

Proof. We must exhibit a lift of the form

Λk[n] eqB(E1, E2)

∆[n] B

i p
p1
2

x

.

41[14, Lemma 3.2.7].
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Since pp1
2 : homB(E1, E2)→ B is a Kan fibration, we can find a diagonal fill-in of the form

(x : ∆[n]→ B, sx : x∗E1 → x∗E2) : ∆[n]→ homB(E1, E2).

In light of (⋆), it suffices to show that sx is a weak equivalence. We already have a weak equivalence
sx◦i : i∗x∗E1 → i∗x∗E2 from our original square. Therefore, Proposition 5.3.3 implies that sx is a
weak equivalence because ∆[n] is connected.

We are now in position to formulate our simplicial notion of univalence. Let p : E → B be a Kan
fibration and let

eq(E) = eqB×B(π∗
1E, π

∗
2E).

As the product of two simplicial sets is computed levelwise, the n-simplices of eq(E) are precisely
triples of the form

(b1, b2, sb1,b2)
b1, b2 ∈ Bn

sb1,b2 : b∗
1E → b∗

2E.

From (⋆), we see that any map X → eq(E) corresponds naturally to a triple of maps

(f1 : X → B, f2 : X → B, sf1,f2 : f∗
1E → f∗

2E). (I)

In particular, we have a map δE : B → eq(E) corresponding to the triple (idB , idB , idE), with

(δE)n(b) = (b, b, idb∗E), b ∈ Bn. (II)

Then δE has two retractions defined by the composites

eq(E) B ×B B, i = 1, 2π∗
2p

π∗
1 p

πi . (III)

Therefore, δE is a split monomorphism.

Definition 5.3.5 (Simplicial univalence). A Kan fibration p : E → B is univalent if δE is a
weak equivalence in sSetQuillen.

Note that the diagram

B eq(E) B ×B
δE

∆B

π∗
2p

π∗
1 p

commutes. Thus, since δE is monic and π∗
2p
π∗

1p is a Kan fibration by Lemma 5.3.4, we have that δE
is univalent if and only if eq(E) is a path space object of B.

Example 5.3.6. For any Kan complex X, the unique map X → 1 is univalent if and only if the
space of homotopy autoequivalences of X is contractible.
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5.4 Proof of univalence
This section first unifies our type-theoretic and simplicial definitions of univalence and then shows
that the Kan fibration pκ : Ûκ → Uκ is simplicially univalent. This implies that the contextual
category sSetUκ

satisfies Voevodsky’s univalence axiom (Definition 2.4.2).

Remark 5.4.1. Recall that we interpret dependent types as pullbacks of pκ. For convenience, we
may write such pullbacks as dependent types within our MLDTT, thereby abusing notation.

Let p1 : E1 → B and p2 : E2 → B be pullbacks of pκ. Suppose that B is a Kan complex (i.e., a
closed type). Consider both the function type

[E1,E2] := Jx : B ⊢ E1 → E2 typeK

and the type
E1 ≃ E2 := Jx : B ⊢ E1 ≃ E2 typeK

of equivalences from E1 to E2 interpreted as Kan fibrations over B.

Proposition 5.4.2.

(1) There is an isomorphism [E1,E2]
∼=−→ homB(E1, E2) over B.42

(2) The induced map E1 ≃ E2 → homB(E1, E2) factors through eqB(E1, E2) ↪→ homB(E1, E2),
and E1 ≃ E2 → eqB(E1, E2) is a trivial fibration.43

Theorem 5.4.3. Suppose that p : E → B is a Kan fibration. Then p is simplicially univalent if
and only if it is type-theoretically univalent in the sense that the Kan fibration

r
x, y : B ⊢ is equiv

(
idtoequivx:B;E(x)(x, y)

)
type

z

over B ×B has a section.

Proof sketch. Consider the map

wE :=
r
x, y : B, z : x⇝B y ⊢ idtoequivx:B;E(x)(x, y)(z) : E(x) ≃ E(y)

z
.

It follows from [14, Lemma 3.3.2] that p is type-theoretically univalent if and only if

Jx, y : B, z : x⇝B yK Jx, y : B, f : is equiv(E(x), E(y))K

B ×B

wE

is a weak equivalence over B × B. The same Lemma together with Proposition 5.4.2 provides us
42[14, Corollary 3.3.3].
43[14, Lemma 3.3.4].
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with a commutative diagram

B ρ1(B) π∗
1E ≃ π∗

2(E)

eqB×B(π∗
1E, π

∗
2E)

homB×B(π∗
1E, π

∗
2E)

B ×B

rB

∆B

(sB ,tB)

wE

.

Recall that the map rB is precisely the interpretation Jx : B ⊢ refl(B, x) : x⇝B xK of reflexivity. By
applying the inference rule Id-comp to our construction of idtoequivx:B;E(x)(x, y) (Lemma 2.4.1),
we deduce that the composite

B −→ homB×B(π∗
1E, π

∗
2E)

is precisely the interpretation Jx : B ⊢ λ(y : E(x)).y : E(x)→ E(x)K of the identity map on E(x).
Therefore, the composite B −→ eqB×B(π∗

1E, π
∗
2E) is precisely δE , defined by (II).

Both rB and E1 ≃ E2 → eqB(E1, E2) are weak equivalences by Proposition 5.2.2 and Proposi-
tion 5.4.2(2), respectively. Hence the two-out-of-three property implies that δE is a weak equivalence
if and only if wE is one.

Theorem 5.4.4. The Kan fibration pκ : Ûκ → Uκ is simplicially univalent.

Proof. We must show that δÛκ
is a weak equivalence. Recall from (III) that the composite

τ := π2 ◦ π∗
2pκ

π∗
1pκ

is a retraction of δÛκ
. Therefore, by two-out-of-three, it suffices to show that τ is a weak equivalence.

In fact, we shall show that it is a trivial fibration. To this end, consider any lifting problem of the
form

A eq
(

Ûκ

)

B Uκ

j δ
Ûκ

.

By Corollary 5.1.8 and our characterization (I) of maps into eq
(

Ûκ

)
, this square naturally corre-

sponds to a commutative diagram of the form

E1 E2 E2

A B

w

p1
p2

⌟
q2

where
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• w is a weak equivalence and

• p1, p2, and q2 are κ-small well-ordered Kan fibrations.

Our pullback square here comes from our lifting problem, which exhibits p2 as the pullback of pκ
along the composite A ↪→ B → Uκ.
Now, a solution to our lifting problem naturally corresponds to a commutative diagram of the form

E1

E1 E2 E2

A B

w

q1
w

p1
p2

⌟
q2

(•)

where

• w is a weak equivalence,

• q1 is a κ-small well-ordered Kan fibration, and

• the square
E1 E1

A B

p1 q1

is a pullback.

Let us define w as the pullback
E1 ΠjE1

E2 ΠjE2︸ ︷︷ ︸
Πjj∗E2

w

⌟
Πjw

ηE2

(⃝)

where η denotes the unit of the adjunction j∗ ⊣ Πj . First, we want to show that E1 ∼= j∗E1 and that
j∗w ∼= w in sSet /A so that (•) commutes. To this end, recall from our proof of Lemma 5.1.9(a) that
j∗Πj

∼= idsSet /A. Thus, using the triangle identities for (j∗,Πj), we can apply the functor j∗(−) to
(⃝) to get

j∗E1 E1

j∗E2︸ ︷︷ ︸
E2

E2

j∗w
⌟

w

idE2

.

This square is a pullback because j∗(−) preserves products as a right adjoint to Σj . Since the
pullback of an isomorphism is again an isomorphism, it follows that E1 ∼= j∗E1 and j∗w ∼= w, as
desired.
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Next, we want to show that q1 is κ-small and well-ordered. In light of our proof of Lemma 5.1.9(b),
both Πjp1 and Πjp1 are κ-small. Since q2 = Πjp2 ◦ ηE2

, it follows that ηE2
is also κ-small. Hence

the map E1 → ΠjE1 is κ-small as the pullback of ηE2
. As κ is regular, this implies that q1 is κ-small

as the composite of two κ-small maps. Moreover, by the axiom of choice, we may assume that q1 is
a well-ordered extension of p1 as in Theorem 5.1.10.

It remains to show that q1 is a Kan fibration and that w is a weak equivalence. As a weak equivalence,
w can be factored as trivial cofibration wc followed by a trivial fibration wf . Further, the partial
mapping Arr(sSet /A)→ Arr(sSet /B) given by w 7→ w respects composition, so that

w = wf ◦ wc.

Hence we may assume that w is either a trivial cofibration or a trivial fibration. First, suppose that
w is a trivial fibration. Then Πjw is also a trivial fibration by Corollary 4.3.13(2). Hence so is w
as the pullback of a trivial fibration, and now q1 is a Kan fibration as the composite of two Kan
fibrations.

Suppose, instead, that w is a trivial cofibration. In this case, Πjw must be a monic in sSet because
Πj(−) preserves monomorphisms as a right adjoint. Hence w is also monic in light of (⃝). Without
loss of generality, we may assume that w is an inclusion map into E2.

Claim. There exists a strong deformation retraction H : E2 ×∆[1]→ E1 of w.

Proof. Since w is a trivial cofibration, we have a diagonal fill-in

E1 E1

E2 A

w p1

p2

r .

Thanks to Corollary 4.1.22, this yields another diagonal fill-in

(E2 × {0}) ∪ (E1 ×∆[1]) ∪ (E2 × {1}) E2

E2 ×∆[1] A

idE2 ∪w∪w◦r

p2

p2◦π1

H .

Now, we may apply Corollary 4.1.22 to obtain a diagonal fill-in

(E2 ×∆[1]) ∪ (E1 ∪∆[1]) ∪ (E2 × {0}) E2

E2 ×∆[1] B

H∪w∪idE2

q2

q2◦π1

H′
.

The induced map H ′
1 factors through E1 because H1 factors through E1 as a retraction of q. There-

fore, H ′
1 is a strong deformation retraction of w. This means that |w| is a homotopy equivalence,

i.e., that w is a weak equivalence in Top. Moreover, H ′
1 exhibits q1 as a retract of q2 in the sense of

(†), and thus q1 is a Kan fibration by Lemma 4.2.10.
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Corollary 5.4.5. For any inaccessible cardinal λ < κ, the contextual category sSetUλ
models

CDTT + Univ.

Awodey’s conjecture
In closing, it is worth mentioning some subsequent generalizations of [14]. To this end, let us
introduce a new kind of category.

Definition 5.4.6 (Reedy category). A Reedy category is a category R equipped with two wide
subcategories R+ and R− along with a degree function d : Ob R → α where α is an ordinal such
that

(i) every morphism in R factors as a map in R− followed by a map in R+,

(ii) every non-identity map a→ b in R+ satisfies d(a) < d(b), and

(iii) every non-identity map a→ b in R− satisfies d(b) < d(a).

Example 5.4.7.

1. Any ordinal α is a Reedy category with R+ ≡ α, R− the discrete category on Obα, and
d ≡ idα.

2. By Lemma 4.1.1(1), the simplex category ∆ is Reedy with R+ the wide subcategory on all
monomorphisms, R− the subcategory on all epimorphisms, and d the inclusion map Ob∆ ↪→ ω.

Also, note that the opposite of a Reedy category is a Reedy category with R+ and R− switched. In
particular, ∆op is a Reedy category.

Let R be a Reedy category and let G be a simplicial presheaf Rop → sSet over R. For any
r ∈ Ob R, the latching object of G over r is the simplicial set

LrG := colim
f∈(∂R+/r)op

Gdom(f)

where ∂R+/r denotes the full subcategory of the over category R+/r on all objects except the
identity map idr. The universal property of colimits yields a unique map LrG→ Gr.

Now, we say that R is an elegant Reedy category if for any monomorphism A ↪→ B in [Rop, sSet]
and any x ∈ Ob R, the unique mediating map

LxA LxB

Ax Ax ∪LxA LxB

Bx

is monic in sSet. (This notion is due to [5].)

Example 5.4.8. The simplex category ∆ is elegant Reedy.
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Thanks to Proposition 5.2.3, we know that [Rop, sSet] can be presented by a type-theoretic model
category for any small elegant Reedy category R. Specifically, in [23], Michael Shulman modi-
fies the construction of [14] to show that CDTT + Univ can be interpreted in the model category
[Rop, sSet]inj. Since the trivial category ∗ is elegant Reedy and

[∗op, sSet] ∼= [(∗ ×∆)op
,Set] ∼= sSet,

it follows that [23] directly generalizes [14].

The general belief that compact-object classifiers model univalent universes leads to “Awodey’s
conjecture”:

Every Grothendieck ∞-topos is presentable by a model category that models CDTT + Univ.

Assuming Conjecture 3.2.13, Shulman released a proof of Awodey’s conjecture in April of 2019 [22].
Therefore, every theorem of homotopy type theory is true in any ∞-topos. In other words, a result
in synthetic homotopy theory (including Univ) holds in any ∞-topos. In this sense, homotopy type
theory serves as a formal language for reasoning within a number of general settings for algebraic
topology at once.

A Deductive systems
Definition A.0.1. A deductive system consists of the following data:

(a) a countable set A of symbols,

(b) a countable set S of (finite) strings over A called expressions or raw terms,

(c) a finite set B of positive integers,

(d) a finite set {σi}i∈B where each σi is a subset of Si, and

(e) a finite set of ordered pairs called inference rules.

The set S is known as the object language of the deductive system (whereas the language of set
theory is chosen as the metalanguage).

For any n ∈ B, we say that an element of σn is a judgment (of order n). By definition, every
inference rule is a pair ({J1, . . . , Jn}, J) where

• n ∈ N and,

• for all 1 ≤ i ≤ n, Ji and J denote judgments.

This is represented graphically as

Name
J1 . . . Jn

J .

We call J the conclusion and each Ji a premise of the rule. When n = 0, the inference rule is called
an axiom.

The set of inference rules generates, via mutual recursion, a finite set {Ri}i∈B of i-place relations on
S as follows.
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1. If J is the conclusion of an axiom and has order i, then J ∈ Ri.

2. If ({J1, . . . , Jn}, J) is an inference rule, each Ji has order ni, J has order k, and Ji ∈ Rni , then
J ∈ Rk.

That is, {Ri} is precisely the smallest family of relations closed under the inference rules.

Definition A.0.2. A theorem is an element of
⋃
i∈B Ri.

Definition A.0.3. A derivation (or a derived rule) is a finite rooted tree with the following prop-
erties.

• Each node is a judgment.

• For any non-leaf F with children F1, . . . , Fk, there is some inference rule ({F1, . . . , Fk}, F ).

Given a derivation, we say that the root is derivable from the leaves.

A theorem can be characterized recursively as either the conclusion of an axiom or a judgment
derivable from a theorem.

Note A.0.4. Since each inference rule has only finitely many premises, each node of a proof tree
has at most k children for some fixed k ∈ N. Hence any proof tree can be viewed as a complete
k-ary tree with nodes marked by inference rules. We can define the set of such trees inductively and
thus perform so-called structural induction to prove properties about proof trees.

B Univalent group theory
In this appendix, we shall define some basic notions of group theory within our MLDTT. Our goal is
to state, in a precise way, the fact that any two isomorphic groups are propositionally equal provided
that Univ is true. In ordinary group theory, identifying two isomorphic groups is common practice
but is technically an abuse of notation when they are not equal as sets. A virtue of homotopy type
theory is that in it, such an abuse of notation becomes formally true.

We shall follow [20, Section 11.2] and adopt our informal notation from Section 2.

Definition B.0.1. We say that a (well-formed) type A is an h-set (or set) if there is some term of
type

is set(A) :=
∏
x,y:A

is prop(x⇝ y).

Remark B.0.2. The axiom UIP asserts that every type is a set.
Now, we can encode the set-theoretic notion of a group in our MLDTT as follows.
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Definition B.0.3. We say that a small type G is a group if there is some term of type

is group(G) :=
∑

p:is set(G)

∑
e:G

∑
i:G→G

∑
µ:G→(G→G) ∏

(x,y,z:G)

µ(µ(x, y), z)⇝ µ(x, µ(y, z))

×
 ∏

(x:G)

µ(e, x)⇝ x

×
 ∏

(x:G)

µ(x, e)⇝ x

×
 ∏

(x:G)

µ(i : x, x)⇝ e

×
 ∏

(x:G)

µ(x, i(x))⇝ x

.
We may write xy for µ(x, y).

We require G to be a set so that it is invariant (up to propositional equality) under a different
proof of, say, associativity of µ. Moreover, Voevodsky has proven that from Univ we can derive that
is set(X) is a mere proposition for any small type X. Hence the definition of G is invariant under
a different proof of is set(G).

Example B.0.4. We can turn the groupoid from Corollary 2.2.4 into a group just as we turn the
fundamental groupoid into the fundamental group in classical topology.
Specifically, for any small type X and element x : X such that is set(x⇝ x), define the loop space
of X at x as the type x⇝X x.

Definition B.0.5. If G and H are groups, then the type of homomorphisms from G to H is

hom(G,H) :=
∑

f :G→H

∏
x,y:G

f(xy)⇝H f(x)f(y).

Example B.0.6. For any group G, the identity homomorphism is idmap
G

:= (idmapG, p) where
p(x, y) := reflxy.

Definition B.0.7.

1. Let (h, p) : hom(G,H) and (k, q) : hom(H,K). The composition of k with h is the term

k◦h := (k ◦ h, p ∗ q) : hom(G,K)

2. For any groups G and H, the type of group isomorphisms from G to H is

G ∼= H :=
∑

h:hom(G,H)

∑
k:hom(H,G)

(
k◦h⇝ idmap

G

)
×
(
h◦k ⇝ idmap

H

)
.

Theorem B.0.8. Assume Univ. Let A,B : U and suppose that el(A) and el(B) are groups. Define
the function

iso eqA,B : (A⇝U B)→ (el(A) ∼= el(B))

inductively by

iso eqA,B(reflA) :=
(

idmapel(A),
(

idmapel(A),
(

reflidmap
el(A)

, reflidmap
el(A)

)))
.

115



Then iso eqA is an equivalence.

C Locally cartesian closed categories
Remark C.0.1. All categories in this section are assumed to be locally small.

Definition C.0.2. A symmetric monoidal category (C ,⊗) is closed if for every X ∈ Ob C , the
functor −⊗X : C → C has a right adjoint, denoted by

[X,−] : C → C .

In this case, an object of the form [X,Y ] is called the internal hom from X to Y .

This generalizes the tensor-hom adjunction found in the category of R-modules.

Definition C.0.3 (Cartesian closed). A category C is cartesian closed if it has all finite products
(hence a terminal object) and for any object X in C , the functor −×X : C → C has a right adjoint,
denoted by

−X : C → C .

In this case, an object of the form Y X is called the exponential of Y by X.

This means that C is cartesian closed exactly when it is closed as a cartesian monoidal category,
with Y X being the internal hom of X and Y .

Suppose that C is cartesian closed. For any object X of C , there is some natural isomorphism
(φZ)Z∈Ob(C op×C ) between the bifunctors

HomC

(
−,−X

)
: C op × C → Set

HomC (−×X,−) : C op × C → Set .

For any Y ∈ Ob C , we call
evX,Y := φ(Y X ,Y )(idY X )

the evaluation morphism for Y X . Note that (evX,Y )Y ∈Ob C is precisely the counit of our chosen
adjunction. This satisfies the following universal property.

Proposition C.0.4. For any object Z and any morphism f : Z × X → Y , there is a unique
morphism f̃ : Z → Y X such that f = evX,Y ◦

(
f̃ × idX

)
.

Z Z ×X

Y X Y X ×X Y

f̃ f̃×idX
f

evX,Y

Proof. It suffices to show that the bijection φ(Z,Y ) : HomC (Z, Y X)→ HomC (Z ×X,Y ) is given by(
Z

ψ−→ Y X
)
7→

(
Z ×X ψ×idX−−−−→ Y X ×X evX,Y−−−−→ Y

)
.
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By naturality, we have that

HomC

(
Y X , Y X

)
HomC

(
Z, Y X

)
HomC

(
Y X ×X,Y

)
HomC (Z ×X,Y )

φ(Y X ,Y )

HomC (ψop,idY X )

φ(Z,Y )

HomC (ψop×idX ,idY )

.

In particular,

evX,Y ◦(ψ × idX) = idY ◦φ(Y X ,Y )(idY X ) ◦ (ψ × idX)
= φ(Z,Y )(idY X ◦ idY X ◦ψ)
= φ(Z,Y ).

Terminology. The morphism f̃ is known as the (exponential) transpose of f relative to φ.
This is precisely the ordinary adjunct of f under φ.

Note C.0.5. Conversely, for any morphism g : Z → Y X , let

ḡ := evX,Y ◦(g × IdX).

By uniqueness of the transpose, we have that ˜̄g = g and ¯̃f = f . Thus, we get a new adjunction
HomC (Z ×X,Y ) ∼= HomC

(
Z, Y X

)
given by f 7→ f̃ and ḡ ←[ g. We call such an adjunction trans.

Example C.0.6. We can think of the exponential Y X as a generalized version of the set of functions
from X to Y . In particular, both Set and FinSet are cartesian closed, where Y X is taken to be
{f | f : X → Y }.

Let us review now the Yoneda lemma, through which we can establish a key class of additional
examples of cartesian closed categories.
Notation. If C is a category, then Ĉ will denote the presheaf category [C op,Set].

Lemma C.0.7 (Yoneda). Let C be a category and let Y : C → Ĉ denote the Yoneda embedding. In
particular, for any C ∈ Ob C , YC := Y(C) denotes the unique (set-valued) presheaf on C represented
by C. If F ∈ Ob Ĉ , then the set map

φ : Hom
Ĉ

(YC , F )→ F (C)
φ(f) = fC(idC)

is a natural bijection in both C and F . In particular, Y is fully faithful.

For any x ∈ F (C), the natural transformation φ−1(x) is given componentwise by(
φ−1(x)

)
D

: HomC (D,C)→ F (D)(
φ−1(x)

)
D

(g) = F (g)(x).
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Therefore, from the natural one-to-one correspondence

x ∈ F (B)←→ YB
x−→ F ,

we obtain another such correspondence

F (f)(x) ∈ F (A)←→ x ◦ Y(f)

for any map f : A→ B in C .

Turning now to a well-known consequence of the Yoneda lemma, consider any presheaf F : C op →
Set. In order to prove our second corollary, define the category

∫
C F of elements of F as follows. Its

objects are precisely pairs (C, x) with C ∈ Ob C and x ∈ F (C), and its morphisms (C, x)→ (C ′, x′)
are precisely morphisms g : C → C ′ in C such that

F (g)(x′) = x.

Note that
∫

C F is small whenever C is small.

Theorem C.0.8 (Density theorem). Let C be a small category. For any F ∈ Ob Ĉ , there is a
functor G : J → C such that J is small and colimj∈JYGj

∼= F .44

Proof sketch. Take
∫

C F as J . Consider the projection functor π :
∫

C F → C given by π(C, x) = C

and π(g) = g on objects and morphisms, respectively. For each element (C, x) of F , define α(C,x) :
Yπ(C,x) → F as the unique map x : YC → F corresponding to x via the Yoneda lemma. This
determines a cocone

{
α(C,x)

}
under Y ◦ π. Further, it can be shown that this is colimiting.

Lemma C.0.9. Let C be any category and J be a small category. For any functors A : J →
[C op,Set] and B : C op → Set, there is a natural isomorphism

colim
j

(Aj ×B) ∼=
(

colim
j

Aj

)
×B.

Proof. By definition of a colimit, we have a canonical cocone {αj : Aj → colimjAj}j . Applying the
functor −×B to this, we get another cocone{

αj × idB : Aj ×B →
(

colim
j

Aj

)
×B

}
j

.

By the universal property of colimits, this induces a unique morphism

α : colim
j

(Aj ×B)→
(

colim
j

Aj

)
×B.

We want to show that α is a natural isomorphism. It suffices to show that each component αC is a
bijection. Since colimits in Ĉ are computed pointwise, we thus may assume wlog that Aj , B ∈ Ob Set
for any j ∈ J . Applying the fact that Set is cartesian closed, we obtain the following chain of

44[2, Proposition 8.10].
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bijections natural in X ∈ Ob Set:

HomSet

(
colim
j

(Aj ×B), X
)
∼= lim

j
HomSet(Aj ×B,X)

∼= lim
j

HomSet
(
Aj , X

B
)

∼= HomSet

(
colim
j

Aj , X
B

)
∼= HomSet

((
colim
j

Aj

)
×B,X

)
.

Since the Yoneda embedding is fully faithful and thus reflects isomorphisms, it follows that
colimj(Aj ×B) ∼= (colimjAj)×B, as desired.

Lemma C.0.10. If C is small, then Ĉ is cartesian closed.

Proof. First of all, recall that Ĉ has all binary products where P ×Q is computed pointwise for any
P,Q ∈ Ob Ĉ , i.e., (P ×Q)(C) = P (C) × P (Q). Recall also that Ĉ has a terminal object, namely
the constant functor at any singleton set. Hence it has all finite products.

It remains to show that −×P always has a right adjoint. For any presheaf Q on C , define QP to be
the presheaf Hom

Ĉ
(Y− × P,Q) on C . Given any F ∈ Ob Ĉ , apply Theorem C.0.8 to get a natural

isomorphism colimj∈JYGj
∼= F. Using the Yoneda lemma together with Lemma C.0.9, we thus get

the following chain of bijections natural in (F,Q):

Hom
Ĉ

(F × P,Q) ∼= Hom
Ĉ

((
colim
j∈J
YGj

)
× P,Q

)
∼= Hom

Ĉ

(
colim
j∈J

(
YGj
× P

)
, Q

)
∼= lim

j
Hom

Ĉ

(
YGj
× P,Q

)
∼= lim

j
Hom

Ĉ

(
YGj

, QP
)

∼= Hom
Ĉ

(
colim
j
YGj

, Qp
)

∼= Hom
Ĉ

(F,Qp).

Hence
(
−× P,−P

)
is an adjoint pair, as required.

If C has all pullbacks, then any morphism f : X → Y in C induces a base change functor
f∗ : C /Y → C /X defined on objects and morphisms, respectively, by

(p : K → Y ) 7→


X ×Y K −→ K
f∗(p)

y y
X

f−→ Y


 K

r−→ K ′

p ↘ ↙q

Y

 7→
 X ×Y K

r∗

−→ X ×Y K ′

f∗(p) ↘ ↙f∗(q)
X


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where f∗(r) is the unique morphism such that

X ×Y K K

X ×Y K ′ K ′

X Y

f∗(r)

f∗(p)

r

p

f∗(q) q

f

commutes.

Lemma C.0.11. Let C be a category with pullbacks and f : X → Y be any morphism in C . Define
the dependent sum functor Σf : C /X → C /Y by post-composition with f . Then (Σf , f∗) is an
adjoint pair.

Proof. We must show that there is a natural isomorphism of bifunctors

HomC/Y (Σf (−),−)→ HomC/X(−, f∗(−)).

For each (a, b) ∈ Ob((C /X)op × (C /Y )), define φ(a,b) by (h : Σf (a)→ b) 7→
(
ĥ : a→ f∗(b)

)
.

A

X ×Y B B

X Y

ĥ

h

a

t

f∗(b) b

f

The universal property of pullbacks implies that this is a bijection natural in (a, b). To see explicitly
that it is natural, let (a : A→ X, b : B → Y ) and (a′ : A′ → X, b′ : B′ → Y ) be objects of (C /X)op×
(C /Y ) and consider any morphism (v, u) : (a, b)→ (a′, b′). We must prove that

φ(a′,b′)(u ◦ h ◦ Σf (v)) = f∗(u) ◦ φ(a,b)(h) ◦ v

for any h : Σf (a) → b. Note that Σf (v) = v. By the universal property of pullbacks, it suffices to
prove that

A B

A′ X ×Y B′ B′

X Y

h

g

f∗(u)◦ĥ◦v

v

a′

f∗(b′)

t′

b′

f

commutes. We have that h = t ◦ ĥ by definition of ĥ. Further, by definition of f∗(u), we have that
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u ◦ t = t′ ◦ f∗(u). Therefore,

t′ ◦ f∗(u) ◦ ĥ ◦ v = u ◦ t ◦ ĥ ◦ v = u ◦ h ◦ v,

i.e., the top trapezoid commutes.
Next, note that

f∗(b′) ◦ f∗(u) ◦ ĥ ◦ v
= f∗(b) ◦ ĥ ◦ v
= a ◦ v
= a′.

Thus, the bottom left triangle commutes as well, so that the whole diagram commutes.

Example C.0.12. Any morphism g : A→ X in Set corresponds uniquely to an X-indexed family
of disjoint sets

(
g−1(x)

)
x∈X . Under this identification, the functor Σf is given by

g 7→

 ∐
x∈f−1(y)

g−1(x)


y∈Y

for any set function f : X → Y .

We have established that f∗ always has a left adjoint. If f∗ always has a right adjoint and C has
all finite limits (equivalently, C has a terminal object in addition to all pullbacks), then we obtain
the following notion.

Definition C.0.13 (Locally cartesian closed category (LCCC)). A category C with finite
limits is locally cartesian closed (LCC) if for each morphism f : X → Y in C , the base change
functor f∗ : C /Y → C /X has a right adjoint, called the dependent product Πf .

Example C.0.14. The category Set of sets is LCC. Indeed, for any set functions f : X → Y and
g : A→ X, we have

Πf (g) =

 ∏
x∈f−1(y)

g−1(x)


y∈Y

,

which is precisely a Y -indexed family of sets of choice functions f−1(y)→
⋃
x∈f−1(y) g

−1(x).

Proposition C.0.15. Let f : X → Y be any map in a LCCC C . There is a unique isomorphism

(−)f ∼= Πf ◦ f∗

of right adjoint functors C /Y → C /Y .

Proof. Note that the binary product functor (−) × f : C /Y → C /Y is precisely the composite
Σf ◦ f∗. Hence both Πf ◦ f∗ and (−)f are right adjoint to (−) × f . But right adjoints are unique
up to unique adjunction-compatible isomorphism, and thus our proof is complete.
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Proposition C.0.16 (Beck-Chevalley condition). Suppose that

D C

A B

k

h

g

f

is a pullback square in a LCCC C . Then there are isomorphisms

Σkh∗φ ∼= f∗Σgφ
Πkh

∗φ ∼= f∗Πgφ

natural in φ ∈ Ob C /C.

Proof. The first isomorphism follows immediately from the pasting law for pullbacks. From this, we
obtain the second isomorphism. Indeed, we have a chain of isomorphisms

Hom(ψ, f∗Πgφ) ∼= Hom(g∗Σfψ,φ)
∼= Hom(Σhk∗ψ,φ)
∼= Hom(ψ,Πkh

∗φ)

natural in (ψ,φ) ∈ Ob(C /A× C /C). Our desired isomorphism now follows from the fact that the
Yoneda embedding is conservative.

Notation. The terminal object of a category will always be denoted by 1.

Theorem C.0.17. Suppose that C has a terminal object. Then C is LCC if and only if C /X is
cartesian closed for every object X of C .

Proof.
(=⇒) Let X ∈ Ob C . We must show that C /X is cartesian closed. Let a : A → X and b : B → X

be morphisms in C . Recall that C /X has all finite products, with binary products being pullbacks

A×X B B

A X

π1

π2

b

a

and the terminal object being idX : X → X. To see that − × a has a right adjoint, note that it is
the same as the composite functor

C /X
a∗

−→ C /A
Σa−→ C /X.

Since C is LCC, we have an adjoint triple Σa ⊣ a∗ ⊣ Πa. This yields an adjunction

Σa ◦ a∗ ⊣ Πa ◦ a∗,

so that −× a has a right adjoint.

(⇐=) Let us show that C has all finite limits. It suffices to show that C has a terminal object and
all pullbacks. By assumption, it has the former. To see that is has the latter, note that each slice
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of C is cartesian closed and thus has all binary products, which are precisely pullback squares in C .
It follows that C has all pullbacks.
Next, let us show that Πf exists for every morphism f : X → Y in C . Define Πf : C /X → C /Y on
objects by mapping a : A→ X to the pullback

Πf (a) (f ◦ a)f

idY ff

⌟
af

τ̃

in C /Y where τ̃ denotes the transpose of the canonical isomorphism

τ : idY ×f
∼=−→ f

relative to trans (defined in Note C.0.5). We see that Πf is functorial as the composite Uf ◦ τ̃∗ ◦−f
where Uf denotes a suitable forgetful functor that outputs just the object of the pullback.
It remains to exhibit a bijection

HomC/Y (b,Πf (a)) ∼= HomC/X(f∗(b), a)

natural in (b : B → Y, a : A→ Y ) ∈ (C /Y )op×C /X. By the universal property of pullbacks, every
g ∈ HomC/Y (b,Πf (a)) naturally corresponds to a pair (g1, g2) of morphisms in C /Y such that

b

Πf (a) (f ◦ a)f

idY ff

g

g1

g2

⌟
af

τ̃

commutes. But g1 must equal b, so that g naturally corresponds to a morphism g′ : b → (f ◦ a)f

such that af ◦ g′ = ĩdY ◦ b. Furthermore, under the equivalence (C /X) ≃ (C /Y )/f , every g ∈
HomC/X(f∗(b), a) is precisely a morphism

b× f f ◦ a

f

g

πX

a

in (C /Y )/f where πX is as in
B ×Y X X

B Y

πB

πX

f

b

.

Now, consider the product-exponential adjunction given by trans in C /Y . We want to show that
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trans restricts to a bijection{
g′ : b→ (f ◦ a)f | af ◦ g′ = ĩdY ◦ b

} ∼=−→ {g : b× f → f ◦ a | a ◦ g = πX},

which must be natural. That is, we want to show that a ◦ transb,f◦a(g′) = πX . Since we have
assumed that

b (f ◦ a)f

idY ff

b

g′

af

τ̃

commutes, it follows from adjunction that

b× f (f ◦ a)

idY ×f f

b×idf

transb,f◦a(g′)

a

transidY,f
(τ̃)

does as well. But transidY,f
(τ̃) = ¯̃τ = τ , and τ ◦ (b× idf ) equals the projection b× f πf−→ f . Since

πf is precisely πX , we have that πX = τ ◦ (b× idf ) = a ◦ transb,f◦a(g′), as desired.

Corollary C.0.18. Let C be LCC.

1. C is cartesian closed.

2. Every slice C /A of C is LCC.

Proof.

1. Simply observe that C ∼= C /1.

2. It is clear that C /X ≃ (C /A)/a for every X ∈ Ob C and every morphism a : X → A in C .
Hence every slice of C /A is cartesian closed, so that C /A is LCC.

Corollary C.0.19. If C is small, then Ĉ is LCC.

Proof. Suppose that C is small. Then
∫

C P is also small for any presheaf P on C . By Lemma C.0.10,
it suffices to show that Ĉ /P ≃

∫̂
C P . Let us construct such an equivalence.

Define the functor φ : Ĉ /P →
∫̂

C P as follows. For each morphism f : F → P in Ĉ , define the
presheaf φ(f) on

∫
C P by mapping each object (C, x) to the fiber product

f−1
C

(x)×{x}︷ ︸︸ ︷
F (C)×P (C) {x} {x}

F (C) P (C)
fC

and each morphism a : (C, x)→ (C ′, x′) to the set function given by (y, x′) 7→ (F (a)(y), x).
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Also, for each morphism
F G

P

h

f
g

in Ĉ /P , define the natural transformation φ(h) : φ(f)→ φ(g) componentwise by

φ(h)C,x : f−1
C (x)× {x} → g−1

C (x)× {x}
(y, x) 7→ (hC(y), x).

For the reverse direction, define the functor π :
∫̂

C P → Ĉ /P as follows. For each presheaf f on
∫

C P ,
first define the presheaf Rf : C op → Set on objects by C 7→

∐
x∈P (C) f(C, x) and on morphisms by

(a : C → C ′) 7→ ((x, y) 7→ (P (a)(x), f(a)(y))),

where a is also a morphism (C,P (a)(x))→ (C ′, x) in
∫

C P . Now, define the natural transformation
π(f) : Rf → P componentwise by π(f)C(x, y) = x.

Also, for each morphism K :=
(
k(C,x)

)
: f → g in

∫̂
C P , define the natural transformation

π(K) : Rf → Rg componentwise by

π(K)C(x, y) =
(
x, k(C,x)(y)

)
.

Clearly, π(g) ◦ π(K) = π(f), so that π(K) is indeed a morphism in Ĉ /P .

Finally, it is easy yet tedious to check that φ ◦ π ∼= id∫̂
C
P

and π ◦ φ ∼= id
Ĉ/P

, and we won’t do so

here.

Example C.0.20.

1. sSet, the category of simplicial sets.

2. [C op, sSet] ∼= [(C ×∆)op
,Set], the category of simplicial presheaves over a small category C .
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