{-# OPTIONS --without-K --rewriting #-}

open import lib.Basics
open import 2Grp
open import 2GrpProps

module 2GrpHom0 where

open CohGrp {{...}}

module MapInv0 {i j} {G₁ : Type i} {G₂ : Type j} {{η₁ : CohGrp G₁}} {{η₂ : CohGrp G₂}}
  (map : G₁  G₂) (map-comp : (x y : G₁)  mu (map x) (map y) == map (mu x y))
  (map-id : id == map id)
  (map-al-rot2 :
    (x y z : G₁) 
     ! (al (map x) (map y) (map z)) ◃∎
     =ₛ
     ap  v  mu v (map z)) (map-comp x y) ◃∙
     map-comp (mu x y) z ◃∙
     ! (ap map (al x y z)) ◃∙
     ! (map-comp x (mu y z)) ◃∙
     ! (ap (mu (map x)) (map-comp y z)) ◃∎)
  (map-inv : (x : G₁)  inv (map x) == map (inv x)) 
  (map-lam : (x : G₁) 
    ! (lam (map x)) ◃∎
    =ₛ
    ! (ap map (lam x)) ◃∙ ! (map-comp id x) ◃∙ ! (ap  z  mu z (map x)) map-id) ◃∎)
  (map-rho : (x : G₁) 
    ! (map-comp x id) ◃∎
    =ₛ
    ap map (rho x) ◃∙ ! (rho (map x)) ◃∙ ap (mu (map x)) map-id ◃∎)
  (x : G₁) where

  rinv-to-linv0 = 
    ! (! (al (inv (map x)) (map x) (inv (map x))) 
      ! (ap (mu (inv (map x))) (rinv (map x))) 
      rho (inv (map x))) ◃∙
    ap  z  mu z (inv (map x)))
      (linv (map x)  map-id  ! (ap map (linv x))  ! (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎
      =ₛ⟨ 0 & 1 &
        !-!∙!∙ (al (inv (map x)) (map x) (inv (map x)))
          (ap (mu (inv (map x))) (rinv (map x))) _ 
    _
      =ₛ⟨ 3 & 1 &
        ap-∙∙!!  z  mu z (inv (map x))) (linv (map x)) (map-id) (ap map (linv x)) _ 
    ! (rho (inv (map x))) ◃∙
    ap (mu (inv (map x))) (rinv (map x)) ◃∙
    al (inv (map x)) (map x) (inv (map x)) ◃∙
    ap  z  mu z (inv (map x))) (linv (map x)) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎ ∎ₛ

  rinv-to-linv1 =
    ! (rho (inv (map x))) ◃∙
    ap (mu (inv (map x))) (rinv (map x)) ◃∙
    al (inv (map x)) (map x) (inv (map x)) ◃∙
    ap  z  mu z (inv (map x))) (linv (map x)) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎
      =ₛ₁⟨ 0 & 4 & ! (zz₂ (map x)) 
    _
      =ₛ⟨ 0 & 1 & hmtpy-nat-!◃ lam (map-inv x) 
    _
      =ₛ⟨ 1 & 1 & map-lam (inv x) 
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (map-comp id (inv x)) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ! (ap (mu id) (map-inv x)) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎ ∎ₛ

  rinv-to-linv2 =
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (map-comp id (inv x)) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ! (ap (mu id) (map-inv x)) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎
      =ₛ⟨ 2 & 1 & hmtpy-nat-!◃-!  z  map-comp z (inv x)) (linv x) 
    _
      =ₛ⟨ 4 & 1 & apCommSq◃  z  ap (mu (map z)) (map-inv x)) (linv x) 
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    ! (map-comp (mu (inv x) x) (inv x)) ◃∙
    ! (ap (mu (map (mu (inv x) x))) (map-inv x)) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ! (ap  z  mu id z) (map-inv x)) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎ ∎ₛ

  rinv-to-linv3 =
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    ! (map-comp (mu (inv x) x) (inv x)) ◃∙
    ! (ap (mu (map (mu (inv x) x))) (map-inv x)) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ! (ap  z  mu id z) (map-inv x)) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎
      =ₛ⟨ 4 & 1 & apCommSq◃!  z  ap  v  mu v z) (map-comp (inv x) x)) (map-inv x) 
    _
      =ₛ⟨ 5 & 1 & apCommSq◃!  z  al (map (inv x)) (map x) z) (map-inv x) 
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    ! (map-comp (mu (inv x) x) (inv x)) ◃∙
    ! (ap  v  mu v (map (inv x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (map (inv x))) ◃∙
    ! (ap  z  mu (map (inv x)) (mu (map x) z)) (map-inv x)) ◃∙
    al (map (inv x)) (map x) (inv (map x)) ◃∙
    ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ! (ap  z  mu id z) (map-inv x)) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎ ∎ₛ

  rinv-to-linv4 =
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    ! (map-comp (mu (inv x) x) (inv x)) ◃∙
    ! (ap  v  mu v (map (inv x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (map (inv x))) ◃∙
    ! (ap  z  mu (map (inv x)) (mu (map x) z)) (map-inv x)) ◃∙
    al (map (inv x)) (map x) (inv (map x)) ◃∙
    ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ! (ap  z  mu id z) (map-inv x)) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎
      =ₛ⟨ 5 & 1 & map-al-rot2 (inv x) x (inv x) 
    _
      =ₛ⟨ 8 & 1 & hmtpy-nat-!◃-!  z  map-comp (inv x) z) (rinv x) 
    _ ∎ₛ

  rinv-to-linv5 =
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    ! (map-comp (mu (inv x) x) (inv x)) ◃∙
    ! (ap  v  mu v (map (inv x))) (map-comp (inv x) x)) ◃∙
    ap  v  mu v (map (inv x))) (map-comp (inv x) x) ◃∙
    map-comp (mu (inv x) x) (inv x) ◃∙
    ! (ap map (al (inv x) x (inv x))) ◃∙
    ! (ap  z  map (mu (inv x) z)) (rinv x)) ◃∙
    ! (map-comp (inv x) id) ◃∙
    ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
    ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
    ! (ap  z  mu (map (inv x)) (mu (map x) z)) (map-inv x)) ◃∙
    al (map (inv x)) (map x) (inv (map x)) ◃∙
    ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ! (ap (mu id) (map-inv x)) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎
      =ₛ⟨ 9 & 1 & map-rho (inv x) 
    _
      =ₛ⟨ 9 & 1 & ap-seq-=ₛ map (!ₛ (zz₂-rot◃ x)) 
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    ! (map-comp (mu (inv x) x) (inv x)) ◃∙
    ! (ap  v  mu v (map (inv x))) (map-comp (inv x) x)) ◃∙
    ap  v  mu v (map (inv x))) (map-comp (inv x) x) ◃∙
    map-comp (mu (inv x) x) (inv x) ◃∙
    ! (ap map (al (inv x) x (inv x))) ◃∙
    ! (ap  z  map (mu (inv x) z)) (rinv x)) ◃∙
    ap map (ap (mu (inv x)) (rinv x)) ◃∙
    ap map (al (inv x) x (inv x)) ◃∙
    ap map (ap  z  mu z (inv x)) (linv x)) ◃∙
    ap map (lam (inv x)) ◃∙
    ! (rho (map (inv x))) ◃∙
    ap (mu (map (inv x))) map-id ◃∙
    ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
    ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
    ! (ap  z  mu (map (inv x)) (mu (map x) z)) (map-inv x)) ◃∙
    al (map (inv x)) (map x) (inv (map x)) ◃∙
    ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ! (ap (mu id) (map-inv x)) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎ ∎ₛ

  module _
    (map-rinv :
      ! (ap (mu (map x)) (map-inv x)) ◃∎
        =ₛ
      map-comp x (inv x) ◃∙
      ! (ap map (rinv x)) ◃∙
      ! map-id ◃∙
      rinv (map x) ◃∎) where

    rinv-to-linv6 =
      ap  z  z) (map-inv x) ◃∙
      ! (ap map (lam (inv x))) ◃∙
      ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
      ! (map-comp (mu (inv x) x) (inv x)) ◃∙
      ! (ap  v  mu v (map (inv x))) (map-comp (inv x) x)) ◃∙
      ap  v  mu v (map (inv x))) (map-comp (inv x) x) ◃∙
      map-comp (mu (inv x) x) (inv x) ◃∙
      ! (ap map (al (inv x) x (inv x))) ◃∙
      ! (ap  z  map (mu (inv x) z)) (rinv x)) ◃∙
      ap map (ap (mu (inv x)) (rinv x)) ◃∙
      ap map (al (inv x) x (inv x)) ◃∙
      ap map (ap  z  mu z (inv x)) (linv x)) ◃∙
      ap map (lam (inv x)) ◃∙
      ! (rho (map (inv x))) ◃∙
      ap (mu (map (inv x))) map-id ◃∙
      ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
      ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
      ! (ap  z  mu (map (inv x)) (mu (map x) z)) (map-inv x)) ◃∙
      al (map (inv x)) (map x) (inv (map x)) ◃∙
      ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
      ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
      ap (mu (map id)) (map-inv x) ◃∙
      ! (ap  z  mu z (map (inv x))) map-id) ◃∙
      ! (ap (mu id) (map-inv x)) ◃∙
      ap  z  mu z (inv (map x))) map-id ◃∙
      ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
      ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
      ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
      ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
      rho (map (inv x)) ◃∎
        =ₛ⟨ 23 & 1 & hmtpy-nat-∙◃!  z  ap  v  mu v z) map-id) (map-inv x) 
      ap  z  z) (map-inv x) ◃∙
      ! (ap map (lam (inv x))) ◃∙
      ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
      ! (map-comp (mu (inv x) x) (inv x)) ◃∙
      ! (ap  v  mu v (map (inv x))) (map-comp (inv x) x)) ◃∙
      ap  v  mu v (map (inv x))) (map-comp (inv x) x) ◃∙
      map-comp (mu (inv x) x) (inv x) ◃∙
      ! (ap map (al (inv x) x (inv x))) ◃∙
      ! (ap  z  map (mu (inv x) z)) (rinv x)) ◃∙
      ap map (ap (mu (inv x)) (rinv x)) ◃∙
      ap map (al (inv x) x (inv x)) ◃∙
      ap map (ap  z  mu z (inv x)) (linv x)) ◃∙
      ap map (lam (inv x)) ◃∙
      ! (rho (map (inv x))) ◃∙
      ap (mu (map (inv x))) map-id ◃∙
      ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
      ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
      ! (ap  z  mu (map (inv x)) (mu (map x) z)) (map-inv x)) ◃∙
      al (map (inv x)) (map x) (inv (map x)) ◃∙
      ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
      ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
      ap (mu (map id)) (map-inv x) ◃∙
      ! (ap  z  mu z (map (inv x))) map-id) ◃∙
      ap  v  mu v (map (inv x))) map-id ◃∙
      ! (ap (mu (map id)) (map-inv x)) ◃∙
      ! (ap  v  mu v (inv (map x))) map-id) ◃∙
      ap  z  mu z (inv (map x))) map-id ◃∙
      ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
      ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
      ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
      ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
      rho (map (inv x)) ◃∎
        =ₛ₁⟨ 17 & 1 & !-ap-∘ (mu (map (inv x))) (mu (map x)) (map-inv x) 
      _
        =ₛ⟨ 17 & 1 & ap-seq-=ₛ (mu (map (inv x))) map-rinv 
      ap  z  z) (map-inv x) ◃∙
      ! (ap map (lam (inv x))) ◃∙
      ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
      ! (map-comp (mu (inv x) x) (inv x)) ◃∙
      ! (ap  v  mu v (map (inv x))) (map-comp (inv x) x)) ◃∙
      ap  v  mu v (map (inv x))) (map-comp (inv x) x) ◃∙
      map-comp (mu (inv x) x) (inv x) ◃∙
      ! (ap map (al (inv x) x (inv x))) ◃∙
      ! (ap  z  map (mu (inv x) z)) (rinv x)) ◃∙
      ap map (ap (mu (inv x)) (rinv x)) ◃∙
      ap map (al (inv x) x (inv x)) ◃∙
      ap map (ap  z  mu z (inv x)) (linv x)) ◃∙
      ap map (lam (inv x)) ◃∙
      ! (rho (map (inv x))) ◃∙
      ap (mu (map (inv x))) map-id ◃∙
      ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
      ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
      ap (mu (map (inv x))) (map-comp x (inv x)) ◃∙
      ap (mu (map (inv x))) (! (ap map (rinv x))) ◃∙
      ap (mu (map (inv x))) (! map-id) ◃∙
      ap (mu (map (inv x))) (rinv (map x)) ◃∙
      al (map (inv x)) (map x) (inv (map x)) ◃∙
      ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
      ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
      ap (mu (map id)) (map-inv x) ◃∙
      ! (ap  z  mu z (map (inv x))) map-id) ◃∙
      ap  v  mu v (map (inv x))) map-id ◃∙
      ! (ap  z  mu (map id) z) (map-inv x)) ◃∙
      ! (ap  v  mu v (inv (map x))) map-id) ◃∙
      ap  z  mu z (inv (map x))) map-id ◃∙
      ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
      ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
      ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
      ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
      rho (map (inv x)) ◃∎ ∎ₛ

  rinv-to-linv7 =
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    ! (map-comp (mu (inv x) x) (inv x)) ◃∙
    ! (ap  v  mu v (map (inv x))) (map-comp (inv x) x)) ◃∙
    ap  v  mu v (map (inv x))) (map-comp (inv x) x) ◃∙
    map-comp (mu (inv x) x) (inv x) ◃∙
    ! (ap map (al (inv x) x (inv x))) ◃∙
    ! (ap  z  map (mu (inv x) z)) (rinv x)) ◃∙
    ap map (ap (mu (inv x)) (rinv x)) ◃∙
    ap map (al (inv x) x (inv x)) ◃∙
    ap map (ap  z  mu z (inv x)) (linv x)) ◃∙
    ap map (lam (inv x)) ◃∙
    ! (rho (map (inv x))) ◃∙
    ap (mu (map (inv x))) map-id ◃∙
    ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
    ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
    ap (mu (map (inv x))) (map-comp x (inv x)) ◃∙
    ap (mu (map (inv x))) (! (ap map (rinv x))) ◃∙
    ap (mu (map (inv x))) (! map-id) ◃∙
    ap (mu (map (inv x))) (rinv (map x)) ◃∙
    al (map (inv x)) (map x) (inv (map x)) ◃∙
    ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ap  v  mu v (map (inv x))) map-id ◃∙
    ! (ap  z  mu (map id) z) (map-inv x)) ◃∙
    ! (ap  v  mu v (inv (map x))) map-id) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎
      =ₛ₁⟨ 4 & 2 & !-inv-l (ap  v  mu v (map (inv x))) (map-comp (inv x) x)) 
    _
      =ₛ₁⟨ 3 & 3 & !-inv-l (map-comp (mu (inv x) x) (inv x)) 
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    idp ◃∙
    ! (ap map (al (inv x) x (inv x))) ◃∙
    ! (ap  z  map (mu (inv x) z)) (rinv x)) ◃∙
    ap map (ap (mu (inv x)) (rinv x)) ◃∙
    ap map (al (inv x) x (inv x)) ◃∙
    ap map (ap  z  mu z (inv x)) (linv x)) ◃∙
    ap map (lam (inv x)) ◃∙
    ! (rho (map (inv x))) ◃∙
    ap (mu (map (inv x))) map-id ◃∙
    ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
    ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
    ap (mu (map (inv x))) (map-comp x (inv x)) ◃∙
    ap (mu (map (inv x))) (! (ap map (rinv x))) ◃∙
    ap (mu (map (inv x))) (! map-id) ◃∙
    ap (mu (map (inv x))) (rinv (map x)) ◃∙
    al (map (inv x)) (map x) (inv (map x)) ◃∙
    ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ap  v  mu v (map (inv x))) map-id ◃∙
    ! (ap  z  mu (map id) z) (map-inv x)) ◃∙
    ! (ap  v  mu v (inv (map x))) map-id) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎ ∎ₛ

  rinv-to-linv8 =
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    idp ◃∙
    ! (ap map (al (inv x) x (inv x))) ◃∙
    ! (ap  z  map (mu (inv x) z)) (rinv x)) ◃∙
    ap map (ap (mu (inv x)) (rinv x)) ◃∙
    ap map (al (inv x) x (inv x)) ◃∙
    ap map (ap  z  mu z (inv x)) (linv x)) ◃∙
    ap map (lam (inv x)) ◃∙
    ! (rho (map (inv x))) ◃∙
    ap (mu (map (inv x))) map-id ◃∙
    ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
    ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
    ap (mu (map (inv x))) (map-comp x (inv x)) ◃∙
    ap (mu (map (inv x))) (! (ap map (rinv x))) ◃∙
    ap (mu (map (inv x))) (! map-id) ◃∙
    ap (mu (map (inv x))) (rinv (map x)) ◃∙
    al (map (inv x)) (map x) (inv (map x)) ◃∙
    ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ap  v  mu v (map (inv x))) map-id ◃∙
    ! (ap  z  mu (map id) z) (map-inv x)) ◃∙
    ! (ap  v  mu v (inv (map x))) map-id) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎
      =ₛ₁⟨ 5 & 2 &
        ap2  p₁ p₂  ! p₁  p₂) (ap-∘ map (mu (inv x)) (rinv x)) idp 
        !-inv-l (ap map (ap (mu (inv x)) (rinv x))) 
    _
      =ₛ₁⟨ 4 & 3 & !-inv-l (ap map (al (inv x) x (inv x))) 
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    idp ◃∙
    idp ◃∙
    ap map (ap  z  mu z (inv x)) (linv x)) ◃∙
    ap map (lam (inv x)) ◃∙
    ! (rho (map (inv x))) ◃∙
    ap (mu (map (inv x))) map-id ◃∙
    ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
    ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
    ap (mu (map (inv x))) (map-comp x (inv x)) ◃∙
    ap (mu (map (inv x))) (! (ap map (rinv x))) ◃∙
    ap (mu (map (inv x))) (! map-id) ◃∙
    ap (mu (map (inv x))) (rinv (map x)) ◃∙
    al (map (inv x)) (map x) (inv (map x)) ◃∙
    ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ap  v  mu v (map (inv x))) map-id ◃∙
    ! (ap  z  mu (map id) z) (map-inv x)) ◃∙
    ! (ap  v  mu v (inv (map x))) map-id) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎ ∎ₛ

  rinv-to-linv9 =
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    ! (ap  z  map (mu z (inv x))) (linv x)) ◃∙
    idp ◃∙
    idp ◃∙
    ap map (ap  z  mu z (inv x)) (linv x)) ◃∙
    ap map (lam (inv x)) ◃∙
    ! (rho (map (inv x))) ◃∙
    ap (mu (map (inv x))) map-id ◃∙
    ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
    ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
    ap (mu (map (inv x))) (map-comp x (inv x)) ◃∙
    ap (mu (map (inv x))) (! (ap map (rinv x))) ◃∙
    ap (mu (map (inv x))) (! map-id) ◃∙
    ap (mu (map (inv x))) (rinv (map x)) ◃∙
    al (map (inv x)) (map x) (inv (map x)) ◃∙
    ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ap  v  mu v (map (inv x))) map-id ◃∙
    ! (ap  z  mu (map id) z) (map-inv x)) ◃∙
    ! (ap  v  mu v (inv (map x))) map-id) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎
      =ₛ₁⟨ 2 & 4 & 
        ap2  p₁ p₂  ! p₁  p₂) (ap-∘ map  z  mu z (inv x)) (linv x)) idp 
        !-inv-l (ap map (ap  z  mu z (inv x)) (linv x))) 
    ap  z  z) (map-inv x) ◃∙
    ! (ap map (lam (inv x))) ◃∙
    idp ◃∙
    ap map (lam (inv x)) ◃∙
    ! (rho (map (inv x))) ◃∙
    ap (mu (map (inv x))) map-id ◃∙
    ap  z  mu (map (inv x)) (map z)) (rinv x) ◃∙
    ! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
    ap (mu (map (inv x))) (map-comp x (inv x)) ◃∙
    ap (mu (map (inv x))) (! (ap map (rinv x))) ◃∙
    ap (mu (map (inv x))) (! map-id) ◃∙
    ap (mu (map (inv x))) (rinv (map x)) ◃∙
    al (map (inv x)) (map x) (inv (map x)) ◃∙
    ap  v  mu v (inv (map x))) (map-comp (inv x) x) ◃∙
    ap  z  mu (map z) (inv (map x))) (linv x) ◃∙
    ap (mu (map id)) (map-inv x) ◃∙
    ! (ap  z  mu z (map (inv x))) map-id) ◃∙
    ap  v  mu v (map (inv x))) map-id ◃∙
    ! (ap  z  mu (map id) z) (map-inv x)) ◃∙
    ! (ap  v  mu v (inv (map x))) map-id) ◃∙
    ap  z  mu z (inv (map x))) map-id ◃∙
    ! (ap  z  mu z (inv (map x))) (ap map (linv x))) ◃∙
    ! (ap  z  mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
    ! (al (map (inv x)) (map x) (inv (map x))) ◃∙
    ! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
    rho (map (inv x)) ◃∎ ∎ₛ