{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import 2Grp
module 2GrpHom1 where
open CohGrp {{...}}
module MapInv1 {i j} {G₁ : Type i} {G₂ : Type j} {{η₁ : CohGrp G₁}} {{η₂ : CohGrp G₂}}
(map : G₁ → G₂) (map-comp : (x y : G₁) → mu (map x) (map y) == map (mu x y))
(map-id : id == map id)
(map-al-rot2 :
(x y z : G₁) →
! (al (map x) (map y) (map z)) ◃∎
=ₛ
ap (λ v → mu v (map z)) (map-comp x y) ◃∙
map-comp (mu x y) z ◃∙
! (ap map (al x y z)) ◃∙
! (map-comp x (mu y z)) ◃∙
! (ap (mu (map x)) (map-comp y z)) ◃∎)
(map-inv : (x : G₁) → inv (map x) == map (inv x))
(map-lam : (x : G₁) →
! (lam (map x)) ◃∎
=ₛ
! (ap map (lam x)) ◃∙ ! (map-comp id x) ◃∙ ! (ap (λ z → mu z (map x)) map-id) ◃∎)
(map-rho : (x : G₁) →
! (map-comp x id) ◃∎
=ₛ
ap map (rho x) ◃∙ ! (rho (map x)) ◃∙ ap (mu (map x)) map-id ◃∎)
(x : G₁) where
rinv-to-linv10 =
ap (λ z → z) (map-inv x) ◃∙
! (ap map (lam (inv x))) ◃∙
idp ◃∙
ap map (lam (inv x)) ◃∙
! (rho (map (inv x))) ◃∙
ap (mu (map (inv x))) map-id ◃∙
ap (λ z → mu (map (inv x)) (map z)) (rinv x) ◃∙
! (ap (mu (map (inv x))) (map-comp x (inv x))) ◃∙
ap (mu (map (inv x))) (map-comp x (inv x)) ◃∙
ap (mu (map (inv x))) (! (ap map (rinv x))) ◃∙
ap (mu (map (inv x))) (! map-id) ◃∙
ap (mu (map (inv x))) (rinv (map x)) ◃∙
al (map (inv x)) (map x) (inv (map x)) ◃∙
ap (λ v → mu v (inv (map x))) (map-comp (inv x) x) ◃∙
ap (λ z → mu (map z) (inv (map x))) (linv x) ◃∙
ap (mu (map id)) (map-inv x) ◃∙
! (ap (λ z → mu z (map (inv x))) map-id) ◃∙
ap (λ v → mu v (map (inv x))) map-id ◃∙
! (ap (λ z → mu (map id) z) (map-inv x)) ◃∙
! (ap (λ v → mu v (inv (map x))) map-id) ◃∙
ap (λ z → mu z (inv (map x))) map-id ◃∙
! (ap (λ z → mu z (inv (map x))) (ap map (linv x))) ◃∙
! (ap (λ z → mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
! (al (map (inv x)) (map x) (inv (map x))) ◃∙
! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
rho (map (inv x)) ◃∎
=ₛ₁⟨ 1 & 3 & !-inv-l (ap map (lam (inv x))) ⟩
_
=ₛ₁⟨ 5 & 2 & !-inv-l (ap (mu (map (inv x))) (map-comp x (inv x))) ⟩
_
=ₛ₁⟨ 4 & 3 & ∘-ap-!-inv-r (mu (map (inv x))) map (rinv x) ⟩
ap (λ z → z) (map-inv x) ◃∙
idp ◃∙
! (rho (map (inv x))) ◃∙
ap (mu (map (inv x))) map-id ◃∙
idp ◃∙
ap (mu (map (inv x))) (! map-id) ◃∙
ap (mu (map (inv x))) (rinv (map x)) ◃∙
al (map (inv x)) (map x) (inv (map x)) ◃∙
ap (λ v → mu v (inv (map x))) (map-comp (inv x) x) ◃∙
ap (λ z → mu (map z) (inv (map x))) (linv x) ◃∙
ap (mu (map id)) (map-inv x) ◃∙
! (ap (λ z → mu z (map (inv x))) map-id) ◃∙
ap (λ v → mu v (map (inv x))) map-id ◃∙
! (ap (λ z → mu (map id) z) (map-inv x)) ◃∙
! (ap (λ v → mu v (inv (map x))) map-id) ◃∙
ap (λ z → mu z (inv (map x))) map-id ◃∙
! (ap (λ z → mu z (inv (map x))) (ap map (linv x))) ◃∙
! (ap (λ z → mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
! (al (map (inv x)) (map x) (inv (map x))) ◃∙
! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
rho (map (inv x)) ◃∎ ∎ₛ
rinv-to-linv11 =
ap (λ z → z) (map-inv x) ◃∙
idp ◃∙
! (rho (map (inv x))) ◃∙
ap (mu (map (inv x))) map-id ◃∙
idp ◃∙
ap (mu (map (inv x))) (! map-id) ◃∙
ap (mu (map (inv x))) (rinv (map x)) ◃∙
al (map (inv x)) (map x) (inv (map x)) ◃∙
ap (λ v → mu v (inv (map x))) (map-comp (inv x) x) ◃∙
ap (λ z → mu (map z) (inv (map x))) (linv x) ◃∙
ap (mu (map id)) (map-inv x) ◃∙
! (ap (λ z → mu z (map (inv x))) map-id) ◃∙
ap (λ v → mu v (map (inv x))) map-id ◃∙
! (ap (λ z → mu (map id) z) (map-inv x)) ◃∙
! (ap (λ v → mu v (inv (map x))) map-id) ◃∙
ap (λ z → mu z (inv (map x))) map-id ◃∙
! (ap (λ z → mu z (inv (map x))) (ap map (linv x))) ◃∙
! (ap (λ z → mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
! (al (map (inv x)) (map x) (inv (map x))) ◃∙
! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
rho (map (inv x)) ◃∎
=ₛ₁⟨ 3 & 3 & ap-!-inv (mu (map (inv x))) map-id ⟩
_
=ₛ₁⟨ 9 & 2 & !-inv-l (ap (λ z → (mu z (map (inv x)))) map-id) ⟩
ap (λ z → z) (map-inv x) ◃∙
idp ◃∙
! (rho (map (inv x))) ◃∙
idp ◃∙
ap (mu (map (inv x))) (rinv (map x)) ◃∙
al (map (inv x)) (map x) (inv (map x)) ◃∙
ap (λ v → mu v (inv (map x))) (map-comp (inv x) x) ◃∙
ap (λ z → mu (map z) (inv (map x))) (linv x) ◃∙
ap (mu (map id)) (map-inv x) ◃∙
idp ◃∙
! (ap (λ z → mu (map id) z) (map-inv x)) ◃∙
! (ap (λ v → mu v (inv (map x))) map-id) ◃∙
ap (λ z → mu z (inv (map x))) map-id ◃∙
! (ap (λ z → mu z (inv (map x))) (ap map (linv x))) ◃∙
! (ap (λ z → mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
! (al (map (inv x)) (map x) (inv (map x))) ◃∙
! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
rho (map (inv x)) ◃∎ ∎ₛ
rinv-to-linv12 =
ap (λ z → z) (map-inv x) ◃∙
idp ◃∙
! (rho (map (inv x))) ◃∙
idp ◃∙
ap (mu (map (inv x))) (rinv (map x)) ◃∙
al (map (inv x)) (map x) (inv (map x)) ◃∙
ap (λ v → mu v (inv (map x))) (map-comp (inv x) x) ◃∙
ap (λ z → mu (map z) (inv (map x))) (linv x) ◃∙
ap (mu (map id)) (map-inv x) ◃∙
idp ◃∙
! (ap (λ z → mu (map id) z) (map-inv x)) ◃∙
! (ap (λ v → mu v (inv (map x))) map-id) ◃∙
ap (λ z → mu z (inv (map x))) map-id ◃∙
! (ap (λ z → mu z (inv (map x))) (ap map (linv x))) ◃∙
! (ap (λ z → mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
! (al (map (inv x)) (map x) (inv (map x))) ◃∙
! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
rho (map (inv x)) ◃∎
=ₛ₁⟨ 8 & 3 & !-inv-r (ap (mu (map id)) (map-inv x)) ⟩
_
=ₛ₁⟨ 9 & 2 & !-inv-l (ap (λ z → mu z (inv (map x))) map-id) ⟩
_
=ₛ₁⟨ 7 & 4 & ∘-!-ap-inv-r (λ z → mu z (inv (map x))) map (linv x) ⟩
ap (λ z → z) (map-inv x) ◃∙
idp ◃∙
! (rho (map (inv x))) ◃∙
idp ◃∙
ap (mu (map (inv x))) (rinv (map x)) ◃∙
al (map (inv x)) (map x) (inv (map x)) ◃∙
ap (λ v → mu v (inv (map x))) (map-comp (inv x) x) ◃∙
idp ◃∙
! (ap (λ z → mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
! (al (map (inv x)) (map x) (inv (map x))) ◃∙
! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
rho (map (inv x)) ◃∎ ∎ₛ
rinv-to-linv13 =
ap (λ z → z) (map-inv x) ◃∙
idp ◃∙
! (rho (map (inv x))) ◃∙
idp ◃∙
ap (mu (map (inv x))) (rinv (map x)) ◃∙
al (map (inv x)) (map x) (inv (map x)) ◃∙
ap (λ v → mu v (inv (map x))) (map-comp (inv x) x) ◃∙
idp ◃∙
! (ap (λ z → mu z (inv (map x))) (map-comp (inv x) x)) ◃∙
! (al (map (inv x)) (map x) (inv (map x))) ◃∙
! (ap (mu (map (inv x))) (rinv (map x))) ◃∙
rho (map (inv x)) ◃∎
=ₛ₁⟨ 6 & 3 & !-inv-r (ap (λ z → mu z (inv (map x))) (map-comp (inv x) x)) ⟩
_
=ₛ₁⟨ 5 & 3 & !-inv-r (al (map (inv x)) (map x) (inv (map x))) ⟩
_
=ₛ₁⟨ 4 & 3 & !-inv-r (ap (mu (map (inv x))) (rinv (map x))) ⟩
ap (λ z → z) (map-inv x) ◃∙
idp ◃∙
! (rho (map (inv x))) ◃∙
idp ◃∙
idp ◃∙
rho (map (inv x)) ◃∎ ∎ₛ
rinv-to-linv14 =
ap (λ z → z) (map-inv x) ◃∙
idp ◃∙
! (rho (map (inv x))) ◃∙
idp ◃∙
idp ◃∙
rho (map (inv x)) ◃∎
=ₛ₁⟨ 1 & 5 & !-inv-l (rho (map (inv x))) ⟩
ap (λ z → z) (map-inv x) ◃∙ idp ◃∎
=ₛ₁⟨ ∙-unit-r (ap (λ z → z) (map-inv x)) ∙ ap-idf (map-inv x) ⟩
map-inv x ◃∎ ∎ₛ