{-# OPTIONS --without-K --rewriting --overlapping-instances --instance-search-depth=4 --lossy-unification #-}
open import lib.Basics
open import lib.types.Pointed
open import lib.types.LoopSpace
open import 2Grp
open import 2GrpMap
open import 2Semigroup
open import 2SGrpMap
open import Hmtpy2Grp
open import KFunctor
open import LoopK-hom
open import LoopFunctor-ap
import Delooping
module Biadj-data.Loop-zig-zag-aux0-defs where
module Loop-zz-aux0-defs {i j} {X : Type i} {Y : Type j} {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} {x₀ : X} {y₀ : Y}
(f : ⊙[ X , x₀ ] ⊙→ ⊙[ Y , y₀ ]) where
open import SqKLoop
open Delooping
instance
_ : has-level 1 (base (Ω ⊙[ X , x₀ ]) == base (Ω ⊙[ X , x₀ ]))
_ = has-level-apply-instance {{K₂-is-2type (Ω ⊙[ X , x₀ ])}}
_ : has-level 1 (base (Ω ⊙[ Y , y₀ ]) == base (Ω ⊙[ Y , y₀ ]))
_ = has-level-apply-instance {{K₂-is-2type (Ω ⊙[ Y , y₀ ])}}
α₁ =
(assoc-wksgrphom
(grphom-forg (Loop2Grp-map f))
(grphom-forg (Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))))
(idf2Mw {{sgrp (Loop2Grp (base (Ω ⊙[ X , x₀ ])))}}))
α₂ =
(assoc-wksgrphom
(grphom-forg (Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}}))))
(grphom-forg (Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))))
(idf2Mw {{sgrp (Loop2Grp (base (Ω ⊙[ X , x₀ ])))}}))
α₃ =
(assoc-wksgrphom
(grphom-forg (Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}}))))
(idf2Mw {{sgrp (Loop2Grp (base (Ω ⊙[ Y , y₀ ])))}})
(grphom-forg (Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)))))
υ₁ =
! (natiso2G-to-== (Loop2Grp-map-∘ f (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})))) ∙
ap Loop2Grp-map (⊙-crd∼-to-== (sq-KΩ x₀ y₀ f)) ∙
natiso2G-to-== (Loop2Grp-map-∘ (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) (K₂-map⊙ (Loop2Grp-map-str f)))
υ₂0 = unit-wksgrphom-r (grphom-forg (Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))))
υ₂1 = unit-wksgrphom-l (grphom-forg (Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))))
𝕞 =
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν = Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
(!ʷ (natiso-whisk-l {μ = grphom-forg (Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})))} υ₂0))
υ₂ =
! (natiso2G-to-==
{μ = Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν = Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
υ₂0) ∙
natiso2G-to-==
{μ = Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν = cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
υ₂1
τ₀ :
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}
=-=
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))
τ₀ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₁ ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}) υ₁ ◃∙
! (natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₂) ◃∙
ap (λ m → Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G m) υ₂ ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
α₃ ◃∎
τ₁ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₁ ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}) υ₁ ◃∙
! (natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₂) ◃∙
! (ap (λ m → Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G m)
(natiso2G-to-== υ₂0)) ◃∙
ap (λ m → Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G m)
(natiso2G-to-== υ₂1) ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
α₃ ◃∎
τ₂ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₁ ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}) υ₁ ◃∙
! (natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₂) ◃∙
𝕞 ◃∙
ap (λ m → Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G m)
(natiso2G-to-== υ₂1) ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
α₃ ◃∎
τ₃ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₁ ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}) υ₁ ◃∙
! (natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₂) ◃∙
𝕞 ◃∙
natiso2G-to-== (natiso-whisk-l {μ = grphom-forg (Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})))} υ₂1) ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
α₃ ◃∎
τ₄ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₁ ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}) υ₁ ◃∙
natiso2G-to-==
{μ =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
(!ʷ α₂) ◃∙
𝕞 ◃∙
natiso2G-to-== (natiso-whisk-l {μ = grphom-forg (Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})))} υ₂1) ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
α₃ ◃∎
τ₅ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₁ ◃∙
! (ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}})
(natiso2G-to-== (Loop2Grp-map-∘ f (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))))) ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}})
(ap Loop2Grp-map (⊙-crd∼-to-== (sq-KΩ x₀ y₀ f))) ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}})
(natiso2G-to-== (Loop2Grp-map-∘ (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) (K₂-map⊙ (Loop2Grp-map-str f)))) ◃∙
natiso2G-to-==
{μ =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
(!ʷ α₂) ◃∙
𝕞 ◃∙
natiso2G-to-== (natiso-whisk-l {μ = grphom-forg (Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})))} υ₂1) ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
α₃ ◃∎
τ₆ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₁ ◃∙
natiso2G-to-== (!ʷ (natiso-whisk-r (Loop2Grp-map-∘ f (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))))) ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}})
(ap Loop2Grp-map (⊙-crd∼-to-== (sq-KΩ x₀ y₀ f))) ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}})
(natiso2G-to-== (Loop2Grp-map-∘ (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) (K₂-map⊙ (Loop2Grp-map-str f)))) ◃∙
natiso2G-to-==
{μ =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
(!ʷ α₂) ◃∙
𝕞 ◃∙
natiso2G-to-== (natiso-whisk-l {μ = grphom-forg (Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})))} υ₂1) ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
α₃ ◃∎
τ₇ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₁ ◃∙
natiso2G-to-== (!ʷ (natiso-whisk-r (Loop2Grp-map-∘ f (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))))) ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}})
(ap Loop2Grp-map (⊙-crd∼-to-== (sq-KΩ x₀ y₀ f))) ◃∙
natiso2G-to-== (natiso-whisk-r
(Loop2Grp-map-∘ (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) (K₂-map⊙ (Loop2Grp-map-str f)))) ◃∙
natiso2G-to-==
{μ =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
(!ʷ α₂) ◃∙
𝕞 ◃∙
natiso2G-to-== (natiso-whisk-l {μ = grphom-forg (Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})))} υ₂1) ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
α₃ ◃∎
τ₈ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₁ ◃∙
natiso2G-to-== (!ʷ (natiso-whisk-r (Loop2Grp-map-∘ f (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))))) ◃∙
ap (λ m → m ∘2G cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}})
(natiso2G-to-== (Loop2Grp-map-ap (sq-KΩ x₀ y₀ f))) ◃∙
natiso2G-to-== (natiso-whisk-r
(Loop2Grp-map-∘ (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) (K₂-map⊙ (Loop2Grp-map-str f)))) ◃∙
natiso2G-to-==
{μ =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
(!ʷ α₂) ◃∙
𝕞 ◃∙
natiso2G-to-== (natiso-whisk-l {μ = grphom-forg (Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})))} υ₂1) ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
α₃ ◃∎
τ₉ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
(Loop2Grp-map f ∘2G
Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
α₁ ◃∙
natiso2G-to-== (!ʷ (natiso-whisk-r (Loop2Grp-map-∘ f (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}}))))) ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (f ⊙∘ K₂-rec-hom {{Loop2Grp x₀}} x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
Loop2Grp-map (K₂-rec-hom {{Loop2Grp y₀}} y₀ (idf2G {{Loop2Grp y₀}}) ⊙∘ K₂-map⊙ (Loop2Grp-map-str f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
(natiso-whisk-r (Loop2Grp-map-ap (sq-KΩ x₀ y₀ f))) ◃∙
natiso2G-to-== (natiso-whisk-r
(Loop2Grp-map-∘ (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) (K₂-map⊙ (Loop2Grp-map-str f)))) ◃∙
natiso2G-to-==
{μ =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
{ν =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f)) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ X , x₀ ]))}}}}}
(!ʷ α₂) ◃∙
𝕞 ◃∙
natiso2G-to-== (natiso-whisk-l {μ = grphom-forg (Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})))} υ₂1) ◃∙
natiso2G-to-==
{μ =
Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}} ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
{ν =
(Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom (idf _) {{idf2G {{Loop2Grp (base (Ω ⊙[ Y , y₀ ]))}}}}) ∘2G
Loop2Grp-map (K₂-action-hom (Loop2Grp-map f))}
α₃ ◃∎