{-# OPTIONS --without-K --rewriting --overlapping-instances --instance-search-depth=4 --lossy-unification #-}
open import lib.Basics
open import lib.types.LoopSpace
open import 2Grp
open import 2GrpMap
open import 2Semigroup
open import 2SGrpMap
open import Hmtpy2Grp
open import KFunctor
open import LoopK-hom
import Delooping
open import Biadj-data.Loop-zig-zag-defs
module Biadj-data.Loop-zig-zag-aux2-defs where
module Loop-zz-aux2-defs {i j} {X : Type i} {Y : Type j} {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} {x₀ : X} {y₀ : Y}
(f : ⊙[ X , x₀ ] ⊙→ ⊙[ Y , y₀ ]) where
open Delooping
open Loop-zz-defs f
instance
_ : has-level 1 (base (Ω ⊙[ X , x₀ ]) == base (Ω ⊙[ X , x₀ ]))
_ = has-level-apply-instance {{K₂-is-2type (Ω ⊙[ X , x₀ ])}}
_ : has-level 1 (base (Ω ⊙[ Y , y₀ ]) == base (Ω ⊙[ Y , y₀ ]))
_ = has-level-apply-instance {{K₂-is-2type (Ω ⊙[ Y , y₀ ])}}
α₁ =
(assoc-wksgrphom
(grphom-forg (Loop2Grp-map f))
(idf2Mw {{sgrp (Loop2Grp x₀)}})
(idf2Mw {{sgrp (Loop2Grp x₀)}}))
α₂ =
(assoc-wksgrphom
(idf2Mw {{sgrp (Loop2Grp y₀)}})
(grphom-forg (Loop2Grp-map f))
(idf2Mw {{sgrp (Loop2Grp x₀)}}))
α₃ =
(assoc-wksgrphom
(idf2Mw {{sgrp (Loop2Grp y₀)}})
(idf2Mw {{sgrp (Loop2Grp y₀)}})
(grphom-forg (Loop2Grp-map f)))
τ₁ :
Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}
=-=
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f
τ₁ =
natiso2G-to-==
{ν =
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₁ ◃∙
ap (λ m → m ∘2G cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})
(! (natiso2G-to-== (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f)))) ∙
natiso2G-to-== {μ = Loop2Grp-map f} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
! (natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₂) ◃∙
ap (λ m → cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G m)
(! (natiso2G-to-== (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f)))) ∙
natiso2G-to-== (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f}
α₃ ◃∎
τ₂ :
Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}
=-=
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f
τ₂ =
natiso2G-to-==
{ν =
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₁ ◃∙
ap (λ m → m ∘2G cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})
(! (natiso2G-to-== (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f)))) ∙
natiso2G-to-== {μ = Loop2Grp-map f} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
! (natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₂) ◃∙
! (ap (λ m → cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G m)
(natiso2G-to-== (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f))))) ◃∙
ap (λ m → cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G m)
(natiso2G-to-== (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f}
α₃ ◃∎
τ₃ :
Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}
=-=
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f
τ₃ =
natiso2G-to-==
{ν =
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₁ ◃∙
ap (λ m → m ∘2G cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})
(! (natiso2G-to-== (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f)))) ∙
natiso2G-to-== {μ = Loop2Grp-map f} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
! (natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₂) ◃∙
! (ap (λ m → cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G m)
(natiso2G-to-== (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f))))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f}
{ν =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f}
α₃ ◃∎
τ₄ :
Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}
=-=
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f
τ₄ =
natiso2G-to-==
{ν =
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₁ ◃∙
ap (λ m → m ∘2G cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})
(! (natiso2G-to-== (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f)))) ∙
natiso2G-to-== {μ = Loop2Grp-map f} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
! (natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₂) ◃∙
natiso2G-to-== (!ʷ
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f))))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f}
{ν =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f}
α₃ ◃∎
τ₅ :
Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}
=-=
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f
τ₅ =
natiso2G-to-==
{ν =
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₁ ◃∙
ap (λ m → m ∘2G cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})
(! (natiso2G-to-== (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f)))) ∙
natiso2G-to-== {μ = Loop2Grp-map f} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
{ν =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})}
(!ʷ α₂) ◃∙
natiso2G-to-== (!ʷ
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f))))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f}
{ν =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f}
α₃ ◃∎
τ₆ :
Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}
=-=
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f
τ₆ =
natiso2G-to-==
{ν =
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₁ ◃∙
! (ap (λ m → m ∘2G cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})
(natiso2G-to-== (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f))))) ◃∙
ap (λ m → m ∘2G cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})
(natiso2G-to-== {μ = Loop2Grp-map f} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
{ν =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})}
(!ʷ α₂) ◃∙
natiso2G-to-== (!ʷ
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f))))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f}
{ν =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f}
α₃ ◃∎
τ₇ :
Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}
=-=
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f
τ₇ =
natiso2G-to-==
{ν =
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₁ ◃∙
! (ap (λ m → m ∘2G cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})
(natiso2G-to-== (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f))))) ◃∙
natiso2G-to-== (natiso-whisk-r (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
{ν =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})}
(!ʷ α₂) ◃∙
natiso2G-to-== (!ʷ
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f))))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f}
{ν =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f}
α₃ ◃∎
τ₈ :
Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}
=-=
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f
τ₈ =
natiso2G-to-==
{ν =
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
α₁ ◃∙
natiso2G-to-== {ν = Loop2Grp-map f ∘2G cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
(!ʷ (natiso-whisk-r (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f))))) ◃∙
natiso2G-to-== (natiso-whisk-r (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f) ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
{ν =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}})}
(!ʷ α₂) ◃∙
natiso2G-to-== (!ʷ
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-r (grphom-forg (Loop2Grp-map f))))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f}
{ν =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
(natiso-whisk-l {μ = idf2Mw {{sgrp (Loop2Grp y₀)}}} (unit-wksgrphom-l (grphom-forg (Loop2Grp-map f)))) ◃∙
natiso2G-to-==
{μ =
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
Loop2Grp-map f)}
{ν =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f}
α₃ ◃∎