{-# OPTIONS --without-K --rewriting --overlapping-instances --instance-search-depth=7 --lossy-unification #-}
open import lib.Basics
open import lib.types.LoopSpace
open import 2Grp
open import 2GrpMap
open import 2GrpMap-conv
open import 2SGrpMap
open import Hmtpy2Grp
open import KFunctor
open import LoopK-hom
import Delooping
open import Biadj-data.Loop-zig-zag-defs
module Biadj-data.Loop-zig-zag-aux2b-defs where
module Loop-zz-aux2b-defs {i j} {X : Type i} {Y : Type j} {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} {x₀ : X} {y₀ : Y}
(f : ⊙[ X , x₀ ] ⊙→ ⊙[ Y , y₀ ]) where
open Delooping
open Loop-zz-defs f
τ₀ :
Loop2Grp-map f ∘2G
(Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom _ {{idf2G {{Loop2Grp (base _)}}}}) ∘2G
(K₂-loopmap (Ω ⊙[ X , x₀ ]))
==
Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}
τ₀ =
natiso2G-to-==
{μ =
Loop2Grp-map f ∘2G
(Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom _ {{idf2G {{Loop2Grp (base _)}}}}) ∘2G
(K₂-loopmap _)}
{ν =
Loop2Grp-map f ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ X , x₀ ])) {{idf2G {{Loop2Grp x₀}}}}}
(natiso-whisk-l {μ = grphom-forg (Loop2Grp-map f)} (Loop-zz₀-iso x₀))
τ₁ :
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f
==
((Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom _ {{idf2G {{Loop2Grp (base _)}}}}) ∘2G
(K₂-loopmap (Ω ⊙[ Y , y₀ ]))) ∘2G
Loop2Grp-map f
τ₁ =
natiso2G-to-==
{μ =
(cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}} ∘2G
cohgrphom (idf (Ω ⊙[ Y , y₀ ])) {{idf2G {{Loop2Grp y₀}}}}) ∘2G
Loop2Grp-map f}
{ν =
((Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom _ {{idf2G {{Loop2Grp (base _)}}}}) ∘2G
(K₂-loopmap _)) ∘2G
Loop2Grp-map f}
(!ʷ (natiso-whisk-r {μ = grphom-forg (Loop2Grp-map f)} (Loop-zz₀-iso y₀)))