{-# OPTIONS --without-K --rewriting --overlapping-instances --instance-search-depth=7 --lossy-unification #-}
open import lib.Basics
open import lib.types.LoopSpace
open import 2Grp
open import 2GrpMap
open import 2GrpMap-conv
open import 2Semigroup
open import 2SGrpMap
open import NatIso2G
open import Hmtpy2Grp
open import KFunctor
open import LoopK-hom
import Delooping
open import Biadj-data.Loop-zig-zag-defs
open import Biadj-data.Loop-zig-zag-aux2a
open import Biadj-data.Loop-zig-zag-aux2b
module Biadj-data.Loop-zig-zag-aux2c where
module Loop-zz-aux2c {i j} {X : Type i} {Y : Type j} {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} {x₀ : X} {y₀ : Y}
(f : ⊙[ X , x₀ ] ⊙→ ⊙[ Y , y₀ ]) where
open Delooping
open Loop-zz-defs f
open Loop-zz-aux2a f
open Loop-zz-aux2b f
abstract
ρ₂-translate3 :
natiso2G-to-== (natiso-whisk-l {μ = grphom-forg (Loop2Grp-map f)} (Loop-zz₀-iso x₀)) ◃∙
natiso2G-to-== ρ₂-trans-mid ◃∙
natiso2G-to-== (!ʷ (natiso-whisk-r {μ = grphom-forg (Loop2Grp-map f)} (Loop-zz₀-iso y₀))) ◃∎
=ₛ
natiso2G-to-== ρ₂-trans ◃∎
ρ₂-translate3 = !ₛ (∘2G-conv-tri
(natiso-whisk-l {μ = grphom-forg (Loop2Grp-map f)} (Loop-zz₀-iso x₀))
ρ₂-trans-mid
(!ʷ (natiso-whisk-r {μ = grphom-forg (Loop2Grp-map f)} (Loop-zz₀-iso y₀))))
abstract
ρ₂-translate : ρ₂ =ₛ natiso2G-to-== ρ₂-trans ◃∎
ρ₂-translate = ρ₂-translate0 ∙ₛ ρ₂-translate1 ∙ₛ ρ₂-translate2 ∙ₛ ρ₂-translate3
ρ₂-trans' : CohGrpNatIso
(Loop2Grp-map f ∘2G
(Loop2Grp-map (K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})) ∘2G
cohgrphom _ {{idf2G {{Loop2Grp (base _)}}}}) ∘2G
K₂-loopmap (Ω ⊙[ X , x₀ ]))
(((Loop2Grp-map (K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}})) ∘2G
cohgrphom _ {{idf2G {{Loop2Grp (base _)}}}}) ∘2G
K₂-loopmap (Ω ⊙[ Y , y₀ ])) ∘2G
Loop2Grp-map f)
ρ₂-trans' =
!ʷ (natiso-whisk-r {μ = grphom-forg (Loop2Grp-map f)} (Loop-zz₀-iso y₀))
natiso-∘
(ρ₂-trans-mid
natiso-∘'
natiso-whisk-l {μ = grphom-forg (Loop2Grp-map f)} (Loop-zz₀-iso x₀))
abstract
ρ₂-translate'-aux : ρ₂-trans == ρ₂-trans'
ρ₂-translate'-aux =
ap (λ n →
!ʷ (natiso-whisk-r {μ = grphom-forg (Loop2Grp-map f)} (Loop-zz₀-iso y₀)) natiso-∘ n)
(natiso-∘=∘' {n₁ = ρ₂-trans-mid}
(natiso-whisk-l {μ = grphom-forg (Loop2Grp-map f)} (Loop-zz₀-iso x₀)))
abstract
ρ₂-translate' : ρ₂ =ₛ natiso2G-to-== ρ₂-trans' ◃∎
ρ₂-translate' = ρ₂-translate ∙ₛ =ₛ-in (ap natiso2G-to-== ρ₂-translate'-aux)