{-# OPTIONS --without-K --rewriting --lossy-unification #-}
open import lib.Basics
open import 2Semigroup
open import 2Grp
open import Delooping
open import KFunctor
module KFunctor-comp-aux1 where
open CohGrp {{...}}
module _ {i j k} {G₁ : Type i} {G₂ : Type j} {G₃ : Type k}
{{η₁ : CohGrp G₁}} {{η₂ : CohGrp G₂}} {{η₃ : CohGrp G₃}} where
module _ {f₁ : G₁ → G₂} (σ₁ : WkSGrpHomStr f₁) {f₂ : G₂ → G₃} (σ₂ : WkSGrpHomStr f₂) (x y : G₁) where
open WkSGrpHomStr
abstract
K₂-map-∘-coher1 :
∙-ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}})) (loop G₁ x) (loop G₁ y) ◃∙
ap (ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}))) (loop-comp G₁ x y) ◃∙
(
K₂-map-β-pts (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) (mu x y) ∙
! (K₂-map-β-pts σ₂ (f₁ (mu x y))) ∙
! (ap (ap (K₂-map σ₂)) (K₂-map-β-pts σ₁ (mu x y))) ∙
∘-ap (K₂-map σ₂) (K₂-map σ₁) (loop G₁ (mu x y))) ◃∎
=ₛ
∙-ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}})) (loop G₁ x) (loop G₁ y) ◃∙
ap (ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}))) (loop-comp G₁ x y) ◃∙
! (ap (ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}))) (loop-comp G₁ x y)) ◃∙
! (∙-ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}})) (loop G₁ x) (loop G₁ y)) ◃∙
ap2 _∙_
(K₂-map-β-pts (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) x)
(K₂-map-β-pts (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) y) ◃∙
loop-comp G₃ ((f₂ ∘ f₁) x) ((f₂ ∘ f₁) y) ◃∙
ap (loop G₃) (map-comp (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) x y) ◃∙
! (ap (λ z → loop G₃ (f₂ z)) (map-comp σ₁ x y)) ◃∙
! (K₂-map-β-pts σ₂ (mu (f₁ x) (f₁ y))) ◃∙
ap (λ z → ap (K₂-map σ₂) (loop G₂ z)) (map-comp σ₁ x y) ◃∙
! (ap (ap (K₂-map σ₂)) (K₂-map-β-pts σ₁ (mu x y))) ◃∙
∘-ap (K₂-map σ₂) (K₂-map σ₁) (loop G₁ (mu x y)) ◃∎
K₂-map-∘-coher1 =
∙-ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}})) (loop G₁ x) (loop G₁ y) ◃∙
ap (ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}))) (loop-comp G₁ x y) ◃∙
(
K₂-map-β-pts (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) (mu x y) ∙
! (K₂-map-β-pts σ₂ (f₁ (mu x y))) ∙
! (ap (ap (K₂-map σ₂)) (K₂-map-β-pts σ₁ (mu x y))) ∙
∘-ap (K₂-map σ₂) (K₂-map σ₁) (loop G₁ (mu x y))) ◃∎
=ₛ⟨ =ₛ-in
(ap
(λ p →
∙-ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}})) (loop G₁ x) (loop G₁ y) ∙
ap (ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}))) (loop-comp G₁ x y) ∙ p)
idp) ⟩
∙-ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}})) (loop G₁ x) (loop G₁ y) ◃∙
ap (ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}))) (loop-comp G₁ x y) ◃∙
K₂-map-β-pts (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) (mu x y) ◃∙
! (K₂-map-β-pts σ₂ (f₁ (mu x y))) ◃∙
! (ap (ap (K₂-map σ₂)) (K₂-map-β-pts σ₁ (mu x y))) ◃∙
∘-ap (K₂-map σ₂) (K₂-map σ₁) (loop G₁ (mu x y)) ◃∎
=ₛ⟨ 2 & 1 & K₂-map-β-comp (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) x y ⟩
∙-ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}})) (loop G₁ x) (loop G₁ y) ◃∙
ap (ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}))) (loop-comp G₁ x y) ◃∙
! (ap (ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}))) (loop-comp G₁ x y)) ◃∙
! (∙-ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}})) (loop G₁ x) (loop G₁ y)) ◃∙
ap2 _∙_
(K₂-map-β-pts (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) x)
(K₂-map-β-pts (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) y) ◃∙
loop-comp G₃ ((f₂ ∘ f₁) x) ((f₂ ∘ f₁) y) ◃∙
ap (loop G₃) (map-comp (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) x y) ◃∙
! (K₂-map-β-pts σ₂ (f₁ (mu x y))) ◃∙
! (ap (ap (K₂-map σ₂)) (K₂-map-β-pts σ₁ (mu x y))) ◃∙
∘-ap (K₂-map σ₂) (K₂-map σ₁) (loop G₁ (mu x y)) ◃∎
=ₛ⟨ 7 & 1 & apCommSq2◃! (K₂-map-β-pts σ₂) (map-comp σ₁ x y) ⟩
∙-ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}})) (loop G₁ x) (loop G₁ y) ◃∙
ap (ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}))) (loop-comp G₁ x y) ◃∙
! (ap (ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}))) (loop-comp G₁ x y)) ◃∙
! (∙-ap (K₂-map (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}})) (loop G₁ x) (loop G₁ y)) ◃∙
ap2 _∙_
(K₂-map-β-pts (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) x)
(K₂-map-β-pts (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) y) ◃∙
loop-comp G₃ ((f₂ ∘ f₁) x) ((f₂ ∘ f₁) y) ◃∙
ap (loop G₃) (map-comp (cohgrphom f₂ {{σ₂}} ∘2Gσ cohgrphom f₁ {{σ₁}}) x y) ◃∙
! (ap (λ z → loop G₃ (f₂ z)) (map-comp σ₁ x y)) ◃∙
! (K₂-map-β-pts σ₂ (mu (f₁ x) (f₁ y))) ◃∙
ap (λ z → ap (K₂-map σ₂) (loop G₂ z)) (map-comp σ₁ x y) ◃∙
! (ap (ap (K₂-map σ₂)) (K₂-map-β-pts σ₁ (mu x y))) ◃∙
∘-ap (K₂-map σ₂) (K₂-map σ₁) (loop G₁ (mu x y)) ◃∎ ∎ₛ