{-# OPTIONS --without-K --rewriting --lossy-unification --overlapping-instances --instance-search-depth=4 #-}
open import lib.Basics
open import 2Semigroup
open import 2Grp
open import Hmtpy2Grp
open import KFunctor
open import Delooping
open import LoopK-hom
open import SqKLoop-aux1-defs
module SqKLoop-aux1 where
module _ {i j} {X : Type i} {Y : Type j} {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} (x₀ : X)
(f : X → Y) (x y : x₀ == x₀) where
open SqKLoop-aux1-abb x₀ f x y
SqKLoop-coher1 =
∙-ap (f ∘ K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀))
(loop (x₀ == x₀) x) (loop (x₀ == x₀) y) ◃∙
ap (ap (f ∘ K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)))
(loop-comp (x₀ == x₀) x y) ◃∙
(ap-∘ f (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀))
(loop (x₀ == x₀) (x ∙ y)) ∙
ap (ap f) (K₂-rec-hom-β-pts x₀ idf2G (x ∙ y)) ∙
! (K₂-rec-hom-β-pts y₀ idf2G (ap f (x ∙ y))) ∙
! (ap (ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
(K₂-map-β-pts (Loop2Grp-map-str (f , idp)) (x ∙ y))) ∙
! (ap-∘ (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)) (K₂-map (Loop2Grp-map-str (f , idp)))
(loop (x₀ == x₀) (x ∙ y)))) ◃∎
=ₛ⟨ =ₛ-in $
ap (λ p →
∙-ap (f ∘ K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀))
(loop (x₀ == x₀) x) (loop (x₀ == x₀) y) ∙
ap (ap (f ∘ K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)))
(loop-comp (x₀ == x₀) x y) ∙ p)
idp ⟩
ν₁
=ₛ⟨ 3 & 1 & ap-seq-=ₛ (ap f) (K₂-rec-hom-β-comp x₀ idf2G x y) ⟩
ν₂
=ₛ⟨ 7 & 1 &
!-=ₛ
(ap-seq-=ₛ
(ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
(K₂-map-β-comp (Loop2Grp-map-str (f , idp)) x y)) ⟩
∙-ap (f ∘ K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀))
(loop (x₀ == x₀) x) (loop (x₀ == x₀) y) ◃∙
ap (ap (f ∘ K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)))
(loop-comp (x₀ == x₀) x y) ◃∙
ap-∘ f (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀))
(loop (x₀ == x₀) (x ∙ y)) ◃∙
ap (ap f)
(! (∙-ap (fst (K₂-rec-hom x₀ idf2G)) (loop (x₀ == x₀) x) (loop (x₀ == x₀) y) ∙
ap (ap (fst (K₂-rec-hom x₀ idf2G))) (loop-comp (x₀ == x₀) x y))) ◃∙
ap (ap f)
(ap2 _∙_
(K₂-rec-hom-β-pts x₀ idf2G x)
(K₂-rec-hom-β-pts x₀ idf2G y)) ◃∙
idp ◃∙
! (K₂-rec-hom-β-pts y₀ idf2G (ap f (x ∙ y))) ◃∙
! (ap
(ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
(ap (loop (y₀ == y₀)) (∙-ap f x y))) ◃∙
! (ap
(ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
(loop-comp (y₀ == y₀) (ap f x) (ap f y))) ◃∙
! (ap
(ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
(ap2 _∙_ (K₂-map-β-pts (Loop2Grp-map-str (f , idp)) x) (K₂-map-β-pts (Loop2Grp-map-str (f , idp)) y))) ◃∙
! (ap
(ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
(! (∙-ap (K₂-map (Loop2Grp-map-str (f , idp))) (loop (x₀ == x₀) x) (loop (x₀ == x₀) y)))) ◃∙
! (ap
(ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
(! (ap (ap (K₂-map (Loop2Grp-map-str (f , idp)))) (loop-comp (x₀ == x₀) x y)))) ◃∙
! (ap-∘ (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)) (K₂-map (Loop2Grp-map-str (f , idp)))
(loop (x₀ == x₀) (x ∙ y))) ◃∎ ∎ₛ