{-# OPTIONS --without-K --rewriting --lossy-unification --overlapping-instances --instance-search-depth=4 #-}

open import lib.Basics
open import 2Semigroup
open import 2Grp
open import Hmtpy2Grp
open import KFunctor
open import Delooping
open import LoopK-hom
open import SqKLoop-aux-defs2

module SqKLoop-aux4 where

module _ {i j} {X : Type i} {Y : Type j} {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} (x₀ : X) (f : X  Y) where

  private
    y₀ = f x₀
    Λx₀ = wksgrp-to-loop x₀ (cohsgrphom (idf (x₀ == x₀)) {{idf2G}})
    Λy₀ = wksgrp-to-loop y₀ (cohsgrphom (idf (y₀ == y₀)) {{idf2G}})

  module _ (c₁ c₂ : base (x₀ == x₀) == base (x₀ == x₀))
    (ζ₃ :
      ap (fst (K₂-rec-hom y₀ idf2G)) (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₁)
        ==
      ap f (ap (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)) c₁))
    (ζ₄ :
      ap (fst (K₂-rec-hom y₀ idf2G)) (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₂)
        ==
      ap f (ap (fst (K₂-rec-hom x₀ idf2G)) c₂)) where

    open SqKLoop-abb2 x₀ f c₁ c₂ ζ₃ ζ₄

    SqKLoop-coher4-aux3a = 
      ! (
        ap2 _∙_
          (ap-∘ f (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)) c₁  ! ζ₃ 
            ! (ap-∘ (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)) (K₂-map (Loop2Grp-map-str (f , idp))) c₁))
          (ap-∘ f (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)) c₂  ! ζ₄ 
            ! (ap-∘ (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)) (K₂-map (Loop2Grp-map-str (f , idp))) c₂))) ◃∙
      ∙-ap (f   K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)) c₁ c₂ ◃∙
      ap-∘ f (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)) (c₁  c₂) ◃∙
      ap (ap f) (! (∙-ap (fst (K₂-rec-hom x₀ idf2G)) c₁ c₂  idp)) ◃∙
      ! (! (ap  z  z)
        (ap-∙ f (ap (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)) c₁) (ap (fst (K₂-rec-hom x₀ idf2G)) c₂)))) ◃∙
      ! (ap2 _∙_ ζ₃ ζ₄) ◃∙
      ! (! (∙-ap (fst (K₂-rec-hom y₀ idf2G))
        (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₁) (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₂)  idp)) ◃∙
      ! (ap (ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
        (! (∙-ap (K₂-map (Loop2Grp-map-str (f , idp))) c₁ c₂))) ◃∙
      ! (ap-∘ (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)) (K₂-map (Loop2Grp-map-str (f , idp))) (c₁  c₂)) ◃∙
      idp ◃∎
        =ₛ⟨ 0 & 1 & 
          !-=ₛ $
            ap2-out _∙_
              (ap-∘ f (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)) c₁  ! ζ₃ 
                ! (ap-∘ (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)) (K₂-map (Loop2Grp-map-str (f , idp))) c₁))
              (ap-∘ f (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)) c₂  ! ζ₄ 
                ! (ap-∘ (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)) (K₂-map (Loop2Grp-map-str (f , idp))) c₂)) 
      ξ₁
        =ₛ⟨ 6 & 1 & !-=ₛ (ap2-out' _∙_ ζ₃ ζ₄) 
      ξ₂ ∎ₛ