{-# OPTIONS --without-K --rewriting --lossy-unification --overlapping-instances --instance-search-depth=4 #-}
open import lib.Basics
open import 2Semigroup
open import 2Grp
open import Hmtpy2Grp
open import KFunctor
open import Delooping
open import LoopK-hom
open import SqKLoop-aux-defs2
open import SqKLoop-aux6
module SqKLoop-aux7 where
module _ {i j} {X : Type i} {Y : Type j} {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} (x₀ : X) (f : X → Y) where
open Sq-aux6 x₀ f
module Sq-aux7 (c₁ c₂ : base (x₀ == x₀) == base (x₀ == x₀)) where
open Sq-aux6-red c₁ c₂
module _
(ζ₃ :
ap (fst (K₂-rec-hom y₀ idf2G)) (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₁)
==
ap f (ap (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)) c₁))
(ζ₄ :
ap (fst (K₂-rec-hom y₀ idf2G)) (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₂)
==
ap f (ap (fst (K₂-rec-hom x₀ idf2G)) c₂)) where
open SqKLoop-abb2 x₀ f c₁ c₂ ζ₃ ζ₄
private
ξ₅ =
ap (λ q → ap (fst (K₂-rec-hom y₀ idf2G)) (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₁) ∙ q) (ζ₃-free c₂) ◃∙
! (ap (_∙_ (ap (fst (K₂-rec-hom y₀ idf2G)) (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₁))) ζ₄) ◃∙
! (! (∙-ap (fst (K₂-rec-hom y₀ idf2G))
(ap (K₂-map (Loop2Grp-map-str (f , idp))) c₁) (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₂) ∙ idp)) ◃∙
! (ap (ap K₂-rec-y₀)
(! (∙-ap (K₂-map (Loop2Grp-map-str (f , idp))) c₁ c₂))) ◃∙
! (ap-∘ K₂-rec-y₀ (K₂-map (Loop2Grp-map-str (f , idp))) (c₁ ∙ c₂)) ◃∙
idp ◃∎
ξ₅' =
h₁ ◃∙
h₂ ◃∙
h₃ ◃∙
! (ap (λ u → u ∙ ap (f ∘ K₂-rec-x₀) c₂)
(! (ap-∘ K₂-rec-y₀ (K₂-map (Loop2Grp-map-str (f , idp))) c₁))) ◃∙
ξ₅
ξ₆ =
! (ap (_∙_
(ap K₂-rec-y₀-∘ c₁))
(! (ap-∘ K₂-rec-y₀ (K₂-map (Loop2Grp-map-str (f , idp))) c₂))) ◃∙
ap (λ q → q ∙ ap (fst (K₂-rec-hom y₀ idf2G)) (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₂)) (ζ₄-free c₁) ◃∙
! (! (∙-ap (fst (K₂-rec-hom y₀ idf2G))
(ap (K₂-map (Loop2Grp-map-str (f , idp))) c₁) (ap (K₂-map (Loop2Grp-map-str (f , idp))) c₂) ∙ idp)) ◃∙
! (ap (ap K₂-rec-y₀)
(! (∙-ap (K₂-map (Loop2Grp-map-str (f , idp))) c₁ c₂))) ◃∙
! (ap-∘ K₂-rec-y₀ (K₂-map (Loop2Grp-map-str (f , idp))) (c₁ ∙ c₂)) ◃∙
idp ◃∎
SqKLoop-coher4-aux3d =
ξ₄
=ₛ⟨ 4 & 7 & ζ₃-red ζ₃ ⟩
ξ₅' ∎ₛ
SqKLoop-coher4-aux3e =
ξ₅'
=ₛ⟨ 1 & 5 & ζ₄-red ζ₄ ⟩
ξ₆ ∎ₛ