{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.Freudenthal
module homotopy.IterSuspensionStable where
module Susp^StableSucc {i} (k n : ℕ) (Skle : S k ≤ n *2)
(X : Ptd i) {{_ : is-connected ⟨ n ⟩ (de⊙ X)}} where
private
Skle' : ⟨ S k ⟩ ≤T ⟨ n ⟩₋₁ +2+ ⟨ n ⟩₋₁
Skle' = ≤T-trans (⟨⟩-monotone-≤ Skle) (inl (lemma n))
where lemma : (n : ℕ) → ⟨ n *2 ⟩ == ⟨ n ⟩₋₁ +2+ ⟨ n ⟩₋₁
lemma O = idp
lemma (S n') = ap S (ap S (lemma n')
∙ ! (+2+-βr ⟨ S n' ⟩₋₂ ⟨ S n' ⟩₋₂))
private
module F = FreudenthalIso
⟨ n ⟩₋₂ k Skle' X
stable : πS (S k) (⊙Susp X) ≃ᴳ πS k X
stable =
πS (S k) (⊙Susp X)
≃ᴳ⟨ πS-Ω-split-iso k (⊙Susp X) ⟩
πS k (⊙Ω (⊙Susp X))
≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso k (⊙Ω (⊙Susp X)) ⁻¹ᴳ ⟩
Ω^S-group k (⊙Trunc ⟨ S k ⟩ (⊙Ω (⊙Susp X)))
≃ᴳ⟨ F.iso ⁻¹ᴳ ⟩
Ω^S-group k (⊙Trunc ⟨ S k ⟩ X)
≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso k X ⟩
πS k X ≃ᴳ∎