{-# OPTIONS --without-K --rewriting #-}

open import lib.Base
open import lib.PathFunctor
open import lib.PathGroupoid
open import lib.Equivalence
open import lib.Function

{- Structural lemmas about paths over paths

The lemmas here have the form
[↓-something-in]  : introduction rule for the something
[↓-something-out] : elimination  rule for the something
[↓-something-β]   : β-reduction  rule for the something
[↓-something-η]   : η-reduction  rule for the something

The possible somethings are:
[cst] : constant fibration
[cst2] : fibration constant in the second argument
[cst2×] : fibration constant and nondependent in the second argument
[ap] : the path below is of the form [ap f p]
[fst×] : the fibration is [fst] (nondependent product)
[snd×] : the fibration is [snd] (nondependent product)

The rule of prime: The above lemmas should choose
between [_∙_] and [_∙'_] in a way that, if the underlying path is [idp],
then the entire lemma reduces to an identity function.
Otherwise, the lemma would have the suffix [in'] or [out'], meaning that
all the choices of [_∙_] or [_∙'_] are exactly the opposite ones.

You can also go back and forth between dependent paths and homogeneous paths
with a transport on one side with the functions
[to-transp],  [from-transp],  [to-transp-β]
[to-transp!], [from-transp!], [to-transp!-β]

More lemmas about paths over paths are present in the lib.types.* modules
(depending on the type constructor of the fibration)
-}

module lib.PathOver where

{- Dependent paths in a constant fibration -}
module _ {i j} {A : Type i} {B : Type j} where

  ↓-cst-in : {x y : A} {p : x == y} {u v : B}
     u == v
     u == v [  _  B)  p ]
  ↓-cst-in {p = idp} q = q

  ↓-cst-out : {x y : A} {p : x == y} {u v : B}
     u == v [  _  B)  p ]
     u == v
  ↓-cst-out {p = idp} q = q

  ↓-cst-β : {x y : A} (p : x == y) {u v : B} (q : u == v)
     (↓-cst-out (↓-cst-in {p = p} q) == q)
  ↓-cst-β idp q = idp

  {- Interaction of [↓-cst-in] with [_∙_] -}
  ↓-cst-in-∙ : {x y z : A} (p : x == y) (q : y == z) {u v w : B}
    (p' : u == v) (q' : v == w)
     ↓-cst-in {p = p  q} (p'  q')
      == ↓-cst-in {p = p} p' ∙ᵈ ↓-cst-in {p = q} q'
  ↓-cst-in-∙ idp idp p' q' = idp

  {- Interaction of [↓-cst-in] with [_∙'_] -}
  ↓-cst-in-∙' : {x y z : A} (p : x == y) (q : y == z) {u v w : B}
    (p' : u == v) (q' : v == w)
     ↓-cst-in {p = p ∙' q} (p' ∙' q')
      == ↓-cst-in {p = p} p' ∙'ᵈ ↓-cst-in {p = q} q'
  ↓-cst-in-∙' idp idp p' q' = idp

  {- Introduction of an equality between [↓-cst-in]s (used to deduce the
     recursor from the eliminator in HIT with 2-paths) -}
  ↓-cst-in2 : {a a' : A} {b b' : B}
    {p₀ p₁ : a == a'} {q₀ q₁ : b == b'} {q : p₀ == p₁}
     q₀ == q₁
     ↓-cst-in {p = p₀} q₀ == ↓-cst-in {p = p₁} q₁
        [  p  b == b' [  _  B)  p ])  q ]
  ↓-cst-in2 {p₀ = idp} {p₁ = .idp} {q = idp} k = k

  ↓-cst-out2 : {a a' : A} {b b' : B}
    {p₀ p₁ : a == a'}
    {q₀ : b == b' [  _  B)  p₀ ]}
    {q₁ : b == b' [  _  B)  p₁ ]}
    {q : p₀ == p₁}
     (q₀ == q₁ [  p  b == b' [  _  B)  p ])  q ] )
     ↓-cst-out q₀ == ↓-cst-out q₁
  ↓-cst-out2 {p₀ = idp} {p₁ = .idp} {q = idp} k = k

  ↓-cst-in2-idp : {a a' : A} {b b' : B}
    (p : a == a') (q : b == b')
     ↓-cst-in2 {q = idp {a = p}} (idp {a = q}) == idp {a = ↓-cst-in {p = p} q}
  ↓-cst-in2-idp idp q = idp

  ↓-cst-in2-∙ : {a a' : A} {b b' : B}
    {p₀ p₁ p₂ : a == a'} {q₀ q₁ q₂ : b == b'} {p₀₁ : p₀ == p₁} {p₁₂ : p₁ == p₂}
     (q₀₁ : q₀ == q₁) (q₁₂ : q₁ == q₂)
     ↓-cst-in2 {q = p₀₁  p₁₂} (q₀₁  q₁₂) == ↓-cst-in2 {q = p₀₁} q₀₁ ∙ᵈ ↓-cst-in2 {q = p₁₂} q₁₂
  ↓-cst-in2-∙ {p₀ = idp} {p₁ = .idp} {p₂ = .idp} {q₀} {q₁} {q₂} {idp} {idp} q₀₁ q₀₂ = idp

  ↓-cst-in-assoc : {a a' a'' a''' : A}
    {p₀ : a == a'} {p₁ : a' == a''} {p₂ : a'' == a'''}
    {b b' b'' b''' : B}
    (q₀ : b == b') (q₁ : b' == b'') (q₂ : b'' == b''')
     ↓-cst-in2 {q = ∙-assoc p₀ p₁ p₂} (∙-assoc q₀ q₁ q₂) 
      (↓-cst-in-∙ p₀ (p₁  p₂) q₀ (q₁  q₂)  (↓-cst-in {p = p₀} q₀ ∙ᵈₗ ↓-cst-in-∙ p₁ p₂ q₁ q₂))
      ==
      ↓-cst-in-∙ (p₀  p₁) p₂ (q₀  q₁) q₂ 
      (↓-cst-in-∙ p₀ p₁ q₀ q₁ ∙ᵈᵣ ↓-cst-in {p = p₂} q₂) 
      ∙ᵈ-assoc (↓-cst-in {p = p₀} q₀) (↓-cst-in {p = p₁} q₁) (↓-cst-in {p = p₂} q₂)
  ↓-cst-in-assoc {p₀ = idp} {p₁ = idp} {p₂ = idp} q₀ q₁ q₂ = idp

  ↓-cst-in2-whisker-right : {a a' a'' : A} {b b' b'' : B}
    {p₀ p₁ : a == a'} {p' : a' == a''}
    {q₀ q₁ : b == b'} {q' : b' == b''}
    {p₀₁ : p₀ == p₁}
     (q₀₁ : q₀ == q₁)
     ↓-cst-in2 {q = ap  r  r  p') p₀₁} (ap  r  r  q') q₀₁) 
      ↓-cst-in-∙ p₁ p' q₁ q'
      ==
      ↓-cst-in-∙ p₀ p' q₀ q' 
      (↓-cst-in2 {q = p₀₁} q₀₁ ∙ᵈᵣ ↓-cst-in {p = p'} q')
  ↓-cst-in2-whisker-right {p₀ = idp} {p₁ = .idp} {p' = idp} {p₀₁ = idp} idp = idp

  ↓-cst-in2-whisker-left : {a a' a'' : A} {b b' b'' : B}
    {p : a == a'} {p₀' p₁' : a' == a''}
    {q : b == b'} {q₀' q₁' : b' == b''}
    {p₀₁' : p₀' == p₁'}
     (q₀₁' : q₀' == q₁')
     ↓-cst-in2 {q = ap  r  p  r) p₀₁'} (ap  r  q  r) q₀₁') 
      ↓-cst-in-∙ p p₁' q q₁'
      ==
      ↓-cst-in-∙ p p₀' q q₀' 
      (↓-cst-in {p = p} q ∙ᵈₗ ↓-cst-in2 {q = p₀₁'} q₀₁')
  ↓-cst-in2-whisker-left {p = idp} {p₀' = idp} {p₁' = .idp} {p₀₁' = idp} idp = idp

-- Dependent paths in a fibration constant in the second argument
module _ {i j k} {A : Type i} {B : A  Type j} {C : A  Type k} where

  ↓-cst2-in : {x y : A} (p : x == y) {b : C x} {c : C y}
    (q : b == c [ C  p ]) {u : B x} {v : B y}
     u == v [ B  p ]
     u == v [  xy  B (fst xy))  (pair= p q) ]
  ↓-cst2-in idp idp r = r

  ↓-cst2-out : {x y : A} (p : x == y) {b : C x} {c : C y}
    (q : b == c [ C  p ]) {u : B x} {v : B y}
     u == v [  xy  B (fst xy))  (pair= p q) ]
     u == v [ B  p ]
  ↓-cst2-out idp idp r = r

-- Dependent paths in a fibration constant and non dependent in the
-- second argument
module _ {i j k} {A : Type i} {B : A  Type j} {C : Type k} where

  ↓-cst2×-in : {x y : A} (p : x == y) {b c : C}
    (q : b == c) {u : B x} {v : B y}
     u == v [ B  p ]
     u == v [  xy  B (fst xy))  (pair×= p q) ]
  ↓-cst2×-in idp idp r = r

  ↓-cst2×-out : {x y : A} (p : x == y) {b c : C}
    (q : b == c) {u : B x} {v : B y}
     u == v [  xy  B (fst xy))  (pair×= p q) ]
     u == v [ B  p ]
  ↓-cst2×-out idp idp r = r

-- Dependent paths in the universal fibration over the universe
↓-idf-out :  {i} {A B : Type i} (p : A == B) {u : A} {v : B}
   u == v [  X  X)  p ]
   coe p u == v
↓-idf-out idp = idf _

↓-idf-in :  {i} {A B : Type i} (p : A == B) {u : A} {v : B}
   coe p u == v
   u == v [  X  X)  p ]
↓-idf-in idp = idf _

-- Dependent paths over [ap f p]
module _ {i j k} {A : Type i} {B : Type j} (C : B  Type k) (f : A  B) where

  ↓-ap-in : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)}
     u == v [ C  f  p ]
     u == v [ C  ap f p ]
  ↓-ap-in {p = idp} q = q

  ↓-ap-out : {x y : A} (p : x == y) {u : C (f x)} {v : C (f y)}
     u == v [ C  ap f p ]
     u == v [ C  f  p ]
  ↓-ap-out idp q = q

  ↓-ap-in-β : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)}
      q  ↓-ap-in {u = u} {v = v} (↓-ap-out p q) == q
  ↓-ap-in-β {p = idp} q = idp

  ↓-ap-in-η : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)}
      q  ↓-ap-out p (↓-ap-in {u = u} {v = v} q) == q
  ↓-ap-in-η {p = idp} q = idp

  ↓-ap-equiv :  {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)}
     (u == v [ C  f  p ])  (u == v [ C  ap f p ])
  ↓-ap-equiv {p = p} = equiv ↓-ap-in (↓-ap-out p) ↓-ap-in-β ↓-ap-in-η

↓-cst-in2-ap :  {i j k} {A : Type i} {B : Type j} {C : Type k}
  {a a' : A} {b b' : B} {c c' : C}
  (f : C  a == a') (g : C  b == b') (r : c == c')
   ↓-cst-in2 {q = ap f r} (ap g r)
    ==
    ↓-ap-in  p  b == b' [  _  B)  p ])
            f
            (apd  c  ↓-cst-in {p = f c} (g c)) r)
↓-cst-in2-ap {c = c} {c' = .c} f g idp = ↓-cst-in2-idp (f c) (g c)

-- Dependent paths over [ap2 f p q]
module _ {i j k l} {A : Type i} {B : Type j} {C : Type k} (D : C  Type l)
  (f : A  B  C) where

  ↓-ap2-in : {x y : A} {p : x == y} {w z : B} {q : w == z}
    {u : D (f x w)} {v : D (f y z)}
     u == v [ D  uncurry f  pair×= p q ]
     u == v [ D  ap2 f p q ]
  ↓-ap2-in {p = idp} {q = idp} α = α

  ↓-ap2-out : {x y : A} {p : x == y} {w z : B} {q : w == z}
    {u : D (f x w)} {v : D (f y z)}
     u == v [ D  ap2 f p q ]
     u == v [ D  uncurry f  pair×= p q ]
  ↓-ap2-out {p = idp} {q = idp} α = α

apd↓ :  {i j k} {A : Type i} {B : A  Type j} {C : (a : A)  B a  Type k}
  (f : {a : A} (b : B a)  C a b) {x y : A} {p : x == y}
  {u : B x} {v : B y} (q : u == v [ B  p ])
   f u == f v [  xy  C (fst xy) (snd xy))  pair= p q ]
apd↓ f {p = idp} idp = idp

apd↓=apd :   {i j} {A : Type i} {B : A  Type j} (f : (a : A)  B a) {x y : A}
  (p : x == y)  (apd f p == ↓-ap-out _ _ p (apd↓ {A = Unit} f {p = idp} p))
apd↓=apd f idp = idp

-- Paths in the fibrations [fst] and [snd]
module _ {i j} where

  ↓-fst×-out : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B')
    {u : A} {v : A'}
     u == v [ fst  pair×= p q ]
     u == v [  X  X)  p ]
  ↓-fst×-out idp idp h = h

  ↓-snd×-in : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B')
    {u : B} {v : B'}
     u == v [  X  X)  q ]
     u == v [ snd  pair×= p q ]
  ↓-snd×-in idp idp h = h

-- Mediating dependent paths with the transport version

module _ {i j} {A : Type i} where

  from-transp : (B : A  Type j) {a a' : A} (p : a == a')
    {u : B a} {v : B a'}
     (transport B p u == v)
     (u == v [ B  p ])
  from-transp B idp idp = idp

  to-transp : {B : A  Type j} {a a' : A} {p : a == a'}
    {u : B a} {v : B a'}
     (u == v [ B  p ])
     (transport B p u == v)
  to-transp {p = idp} idp = idp

  to-transp-β : (B : A  Type j) {a a' : A} (p : a == a')
    {u : B a} {v : B a'}
    (q : transport B p u == v)
     to-transp (from-transp B p q) == q
  to-transp-β B idp idp = idp

  to-transp-η : {B : A  Type j} {a a' : A} {p : a == a'}
    {u : B a} {v : B a'}
    (q : u == v [ B  p ])
     from-transp B p (to-transp q) == q
  to-transp-η {p = idp} idp = idp

  to-transp-equiv : (B : A  Type j) {a a' : A} (p : a == a')
    {u : B a} {v : B a'}  (u == v [ B  p ])  (transport B p u == v)
  to-transp-equiv B p =
    equiv to-transp (from-transp B p) (to-transp-β B p) (to-transp-η)

  from-transp! : (B : A  Type j)
    {a a' : A} (p : a == a')
    {u : B a} {v : B a'}
     (u == transport! B p v)
     (u == v [ B  p ])
  from-transp! B idp idp = idp

  to-transp! : {B : A  Type j}
    {a a' : A} {p : a == a'}
    {u : B a} {v : B a'}
     (u == v [ B  p ])
     (u == transport! B p v)
  to-transp! {p = idp} idp = idp

  to-transp!-β : (B : A  Type j)
    {a a' : A} (p : a == a')
    {u : B a} {v : B a'}
    (q : u == transport! B p v)
     to-transp! (from-transp! B p q) == q
  to-transp!-β B idp idp = idp

  to-transp!-η : {B : A  Type j} {a a' : A} {p : a == a'}
    {u : B a} {v : B a'}
    (q : u == v [ B  p ])
     from-transp! B p (to-transp! q) == q
  to-transp!-η {p = idp} idp = idp

  to-transp!-equiv : (B : A  Type j) {a a' : A} (p : a == a')
    {u : B a} {v : B a'}  (u == v [ B  p ])  (u == transport! B p v)
  to-transp!-equiv B p =
    equiv to-transp! (from-transp! B p) (to-transp!-β B p) (to-transp!-η)

-- apd-tr conversion

  from-transp-g : (B : A  Type j) {a a' : A} (p : a == a')
    {u : B a} {v : B a'}
     (transport B p u == v)
     (u == v [ B  p ])
  from-transp-g B idp h = h

  apd-to-tr : (B : A  Type j) (f : (a : A)  B a) {x y : A} (p : x == y)
    (s : transport B p (f x) == f y)
     apd f p == from-transp-g B p s  apd-tr f p == s
  apd-to-tr B f idp s h = h

-- hmtpy-nat conversion

module _ {i j} {A : Type i} {B : Type j} (f g : A  B) where

  from-hmtpy-nat : {x y : A} (p : x == y) {e₁ : f x == g x} {e₂ : f y == g y} 
     ap f p == e₁  ap g p  ∙' ! e₂
     e₁ == e₂ [  z  f z == g z)  p ]
  from-hmtpy-nat idp {e₁} {e₂} v = ∙-idp-!-∙'-rot e₁ e₂ v

  module _ (K : (z : A)  f z == g z) where
    
    apd-to-hnat : {x y : A} (p : x == y) (m : ap f p == K x  ap g p  ∙' ! (K y))
       apd K p == from-hmtpy-nat p m  hmtpy-nat-∙' K p == m
    apd-to-hnat {x} idp m q = lemma (K x) m q
      where
        lemma : {x₁ x₂ : B} (v : x₁ == x₂) (n : idp == v  idp ∙' ! v)
          (r : idp == ∙-idp-!-∙'-rot v v n)
           ! (!-inv-r v)  ap (_∙_ v) (! (∙'-unit-l (! v))) == n
        lemma idp n r = !-inj-rot n (r  ∙-unit-r (ap ! (n  idp))  ap (ap !) (∙-unit-r n))

    apd-to-hnat-∙ : {x y z : A} (p₁ : x == y) (p₂ : y == z)
      {m₁ : ap f p₁ == K x  ap g p₁ ∙' ! (K y)} {m₂ : ap f p₂ == K y  ap g p₂ ∙' ! (K z)}
      (τ₁ : hmtpy-nat-∙' K p₁ == m₁) (τ₂ : hmtpy-nat-∙' K p₂ == m₂)
      
      hmtpy-nat-∙' K (p₁  p₂)
        ==
       (ap-∙ f p₁ p₂ ◃∙
      ap  p  p  ap f p₂) m₁ ◃∙
      ap  p  (K x  ap g p₁ ∙' ! (K y))  p) m₂ ◃∙
      assoc-tri-!-mid (K x) (ap g p₁) (K y) (ap g p₂) (! (K z)) ◃∙
      ap  p  K x  p ∙' ! (K z)) (! (ap-∙ g p₁ p₂)) ◃∎)
    apd-to-hnat-∙ {x} idp idp idp idp = assoc-tri-!-coher (K x)

    apd-to-hnat-! : {x y : A} (p : x == y)
      {m : ap f p == K x  ap g p ∙' ! (K y)} (τ : hmtpy-nat-∙' K p == m)
       hmtpy-nat-∙' K (! p) == ap-! f p  ap ! m  !-∙-ap-∙'-! g (K x) p (K y)
    apd-to-hnat-! {x} idp idp = !-∙-ap-∙'-!-coher g (K x)

    apd-to-hnat-ap! :  {l} {C : Type l} (h : B  C) {x y : A} (p : x == y)
      {m : ap f p == K x  ap g p  ∙' ! (K y)} (τ : hmtpy-nat-∙' K p == m)
      
      hmtpy-nat-∙'  z  ap h (! (K z))) p
        ==
      ap-∘-long h g f K p 
      ! (ap  q  ap h (! (K x))  ap h q ∙' ! (ap h (! (K y)))) m) 
      ! (ap  q  ap h (! (K x))  q ∙' ! (ap h (! (K y)))) (ap-∘ h f p))
    apd-to-hnat-ap! h {x} idp idp = idp-ap-!-!-∙-∙'-coher h (K x)


module _ {i j} {A : Type i} {B : Type j} {f g : A  B} where

  from-hmtpy-nat-d : (H₁ H₂ : f  g) {x y : A} (p : x == y) {e₁ : H₁ x == H₂ x} {e₂ : H₁ y == H₂ y} 
     hmtpy-nat-∙' H₁ p == hmtpy-nat-∙' H₂ p ∙' ap2  p₁ p₂  p₁  ap g p ∙' ! p₂) (! e₁) (! e₂)
     e₁ == e₂ [  z  H₁ z == H₂ z)  p ]
  from-hmtpy-nat-d _ _ idp {e₁} {e₂} v = lemma e₁ e₂ v
    where
      lemma : {b₁ b₂ : B} {t₁ t₂ : b₁ == b₂} (c₁ c₂ : t₁ == t₂) 
        ! (!-inv-r t₁)  ap (_∙_ t₁) (! (∙'-unit-l (! t₁)))
          ==
        (! (!-inv-r t₂)  ap (_∙_ t₂) (! (∙'-unit-l (! t₂)))) ∙'
        ap2  p₁ p₂  p₁  idp ∙' ! p₂) (! c₁) (! c₂)
        
        c₁ == c₂
      lemma {t₁ = idp} idp c₂ r = ! (ap ! aux)  !-! c₂
        where
          aux : ! c₂ == idp
          aux =
            ap-equiv-idp {p = ! c₂}
              (∼-preserves-equiv  x  ! (∙'-unit-l (! x))) (is-eq ! ! !-! !-!))
              (! (r  ∙'-unit-l (ap2  p₁ p₂  p₁  idp ∙' ! p₂) idp (! c₂))  ap2-idp-l _ (! c₂)))

{-
  An extensional definition of homotopy of pointed functions.
  We also call such a homotopy "unfolded." 
-}

module _ {i j} {X : Ptd i} {Y : Ptd j} where 

  -- "crd" stands for "coordinate"
  infixr 30 _⊙-crd∼_
  _⊙-crd∼_ : (f g : X ⊙→ Y)  Type (lmax i j)
  _⊙-crd∼_ f g = Σ (fst f  fst g) λ H  ! (H (pt X))  snd f == snd g

  comp-⊙∼ : {f g : X ⊙→ Y} (H : f ⊙∼ g)  ! (fst H (pt X))  snd f == snd g
  comp-⊙∼ {f = f} H = ! (transp-cst=idf-l (fst H (pt X)) (snd f))  to-transp (snd H)

  ⊙-to-crd : {f g : X ⊙→ Y}  f ⊙∼ g  f ⊙-crd∼ g
  ⊙-to-crd H = fst H , comp-⊙∼ H  

  comp-to-⊙ : {f g : X ⊙→ Y}  f ⊙-crd∼ g  f ⊙∼ g
  fst (comp-to-⊙ H) = fst H
  snd (comp-to-⊙ {f} H) =
    from-transp (_== pt Y) (fst H (pt X)) (transp-cst=idf-l (fst H (pt X)) (snd f)  snd H)

  ⊙id-to-crd : {f g : X ⊙→ Y} (p : f == g)  f ⊙-crd∼ g
  fst (⊙id-to-crd idp) = λ x  idp
  snd (⊙id-to-crd idp) = idp

{- Various other lemmas -}

module _ {i j} {A : Type i} {B : Type j} where

  {- Used for defining the recursor from the eliminator for 1-HIT -}
  apd=cst-in :  {f : A  B} {a a' : A} {p : a == a'} {q : f a == f a'}
     apd f p == ↓-cst-in q  ap f p == q
  apd=cst-in {p = idp} x = x

  ap=↓-cst-out-apd :  (f : A  B) {a a' : A} (p : a == a')
     ap f p == ↓-cst-out (apd f p)
  ap=↓-cst-out-apd f idp = idp

↓-apd-out :  {i j k} {A : Type i} {B : A  Type j} (C : (a : A)  B a  Type k)
  {f : Π A B} {x y : A} {p : x == y}
  {q : f x == f y [ B  p ]} (r : apd f p == q)
  {u : C x (f x)} {v : C y (f y)}
   u == v [ uncurry C  pair= p q ]
   u == v [  z  C z (f z))  p ]
↓-apd-out C {p = idp} idp idp = idp

↓-ap-out= :  {i j k} {A : Type i} {B : Type j} (C : (b : B)  Type k)
  (f : A  B) {x y : A} (p : x == y)
  {q : f x == f y} (r : ap f p == q)
  {u : C (f x)} {v : C (f y)}
   u == v [ C  q ]
   u == v [  z  C (f z))  p ]
↓-ap-out= C f idp idp idp = idp

-- No idea what that is
to-transp-weird :  {i j} {A : Type i} {B : A  Type j}
  {u v : A} {d : B u} {d' d'' : B v} {p : u == v}
  (q : d == d' [ B  p ]) (r : transport B p d == d'')
   (from-transp B p r ∙'ᵈ (! r  to-transp q)) == q
to-transp-weird {p = idp} idp idp = idp

-- Something not really clear yet
module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A  C) (g : B  C)
  where

  ↓-swap : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
    (r : f a == g b') (s : f a' == g b)
     (ap f p ∙' s == r [  x  f a == g x)   q ])
     (r == s  ap g q  [  x  f x == g b')  p ])
  ↓-swap {p = idp} {q = idp} r s t = (! t)  ∙'-unit-l s  ! (∙-unit-r s)

  ↓-swap! : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
    (r : f a == g b') (s : f a' == g b)
     (r == s  ap g q  [  x  f x == g b')  p ])
     (ap f p ∙' s == r [  x  f a == g x)   q ])
  ↓-swap! {p = idp} {q = idp} r s t = ∙'-unit-l s  ! (∙-unit-r s)  (! t)

  ↓-swap-β : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
    (r : f a == g b') (s : f a' == g b)
    (t : ap f p ∙' s == r [  x  f a == g x)  q ])
     ↓-swap! r s (↓-swap r s t) == t
  ↓-swap-β {p = idp} {q = idp} r s t = coh (∙'-unit-l s) (∙-unit-r s) t  where

    coh :  {i} {X : Type i} {x y z t : X} (p : x == y) (q : z == y) (r : x == t)
       p  ! q  ! (! r  p  ! q) == r
    coh idp idp idp = idp


transp-↓ :  {i j} {A : Type i} (P : A  Type j) {a₁ a₂ : A}
  (p : a₁ == a₂) (y : P a₂)  transport P (! p) y == y [ P  p ]
transp-↓ _ idp _ = idp

transp-ap-↓ :  {i j k} {A : Type i} {B : Type j} (P : B  Type k) (h : A  B)
  {a₁ a₂ : A} (p : a₁ == a₂) (y : P (h a₂))
   transport P (! (ap h p)) y == y [ P  h  p ]
transp-ap-↓ _ _ idp _ = idp