{-# OPTIONS --without-K --rewriting --overlapping-instances --instance-search-depth=4 --lossy-unification #-}
open import lib.Basics
open import 2Semigroup
open import 2Grp
open import Hmtpy2Grp
open import KFunctor
open import Delooping
open import K-hom-ind
open import KFunctor-comp
open import SqKLoop
open import apK
module KLoop-ptr-comp-aux0 where
module KLPC-aux0 {i j k} {X : Type i} {Y : Type j} {Z : Type k}
{{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} {{ηZ : has-level 2 Z}}
(f : X → Y) (g : Y → Z) (x₀ : X) (x : x₀ == x₀) where
open import KLoop-ptr-comp-defs f g x₀ x
abstract
K₂-β-1 : hmtpy-nat-∙' (fst (sq-KΩ x₀ z₀ (g ∘ f , idp))) (loop (x₀ == x₀) x) == ↯ σ₁
K₂-β-1 =
K₂-∼-ind-β
(g ∘ f ∘ K₂-rec-x₀ x₀ z₀)
(K₂-rec-y₀ x₀ z₀ ∘ K₂-map (Loop2Grp-map-str (g ∘ f , idp)))
idp
ν₁
_ x
K₂-β-2 : hmtpy-nat-∙' (fst (sq-KΩ x₀ y₀ (f , idp))) (loop (x₀ == x₀) x) == ↯ σ₂
K₂-β-2 =
K₂-∼-ind-β
(f ∘ K₂-rec-x₀ x₀ y₀)
(K₂-rec-y₀ x₀ y₀ ∘ K₂-map (Loop2Grp-map-str (f , idp)))
idp
ν₂
_ x
K₂-β-3 : hmtpy-nat-∙' (fst (sq-KΩ y₀ z₀ (g , idp))) (loop (y₀ == y₀) (ap f x)) ◃∎ =ₛ σ₃
K₂-β-3 = =ₛ-in $
K₂-∼-ind-β
(g ∘ K₂-rec-x₀ y₀ z₀)
(K₂-rec-y₀ y₀ z₀ ∘ K₂-map (Loop2Grp-map-str (g , idp)))
idp
ν₃
_ (ap f x)
K₂-β-4 : hmtpy-nat-∙' (fst (apK₂ (Loop2Grp-map-∘ (g , idp) (f , idp)))) (loop (x₀ == x₀) x) == ↯ σ₄
K₂-β-4 =
K₂-∼-ind-β
(fst (K₂-map⊙ (Loop2Grp-map-str (g ∘ f , idp))))
(fst (K₂-map⊙ (cohsgrphom (ap g) {{Loop2Grp-map-str (g , idp)}} ∘2Mσ cohsgrphom (ap f) {{Loop2Grp-map-str (f , idp)}})))
idp
ν₄
_ x
K₂-β-5 : hmtpy-nat-∙' (fst (K₂-map-∘ (Loop2Grp-map-str (f , idp)) (Loop2Grp-map-str (g , idp)))) (loop (x₀ == x₀) x) == ↯ σ₅
K₂-β-5 =
K₂-∼-ind-β
(map₁-∘ (Loop2Grp-map-str (f , idp)) (Loop2Grp-map-str (g , idp)))
(map₂-∘ (Loop2Grp-map-str (f , idp)) (Loop2Grp-map-str (g , idp)))
idp
ν₅
_ x