{-# OPTIONS --without-K --rewriting --overlapping-instances --instance-search-depth=4 --lossy-unification #-}

open import lib.Basics
open import 2Semigroup
open import 2Grp
open import Hmtpy2Grp
open import KFunctor
open import Delooping
open import K-hom-ind
open import KFunctor-comp
open import SqKLoop
open import apK

module KLoop-ptr-comp-aux0 where

module KLPC-aux0 {i j k} {X : Type i} {Y : Type j} {Z : Type k}
  {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} {{ηZ : has-level 2 Z}}
  (f : X  Y) (g : Y  Z) (x₀ : X) (x : x₀ == x₀) where

  open import KLoop-ptr-comp-defs f g x₀ x

  abstract

    K₂-β-1 : hmtpy-nat-∙' (fst (sq-KΩ x₀ z₀ (g  f , idp))) (loop (x₀ == x₀) x) ==  σ₁
    K₂-β-1 =
      K₂-∼-ind-β
        (g  f  K₂-rec-x₀ x₀ z₀)
        (K₂-rec-y₀ x₀ z₀  K₂-map (Loop2Grp-map-str (g  f , idp)))
        idp
        ν₁
        _ x

    K₂-β-2 : hmtpy-nat-∙' (fst (sq-KΩ x₀ y₀ (f , idp))) (loop (x₀ == x₀) x) ==  σ₂
    K₂-β-2 =
      K₂-∼-ind-β
        (f  K₂-rec-x₀ x₀ y₀)
        (K₂-rec-y₀ x₀ y₀  K₂-map (Loop2Grp-map-str (f , idp)))
        idp
        ν₂
        _ x

    K₂-β-3 : hmtpy-nat-∙' (fst (sq-KΩ y₀ z₀ (g , idp))) (loop (y₀ == y₀) (ap f x)) ◃∎ =ₛ σ₃
    K₂-β-3 = =ₛ-in $
      K₂-∼-ind-β
        (g  K₂-rec-x₀ y₀ z₀)
        (K₂-rec-y₀ y₀ z₀  K₂-map (Loop2Grp-map-str (g , idp)))
        idp
        ν₃
        _ (ap f x)

    K₂-β-4 : hmtpy-nat-∙' (fst (apK₂ (Loop2Grp-map-∘ (g , idp) (f , idp)))) (loop (x₀ == x₀) x) ==  σ₄
    K₂-β-4 =
      K₂-∼-ind-β
        (fst (K₂-map⊙ (Loop2Grp-map-str (g  f , idp))))
        (fst (K₂-map⊙ (cohsgrphom (ap g) {{Loop2Grp-map-str (g , idp)}} ∘2Mσ cohsgrphom (ap f) {{Loop2Grp-map-str (f , idp)}})))
        idp
        ν₄
        _ x

    K₂-β-5 : hmtpy-nat-∙' (fst (K₂-map-∘ (Loop2Grp-map-str (f , idp)) (Loop2Grp-map-str (g , idp)))) (loop (x₀ == x₀) x) ==  σ₅
    K₂-β-5 =
      K₂-∼-ind-β
        (map₁-∘ (Loop2Grp-map-str (f , idp)) (Loop2Grp-map-str (g , idp)))
        (map₂-∘ (Loop2Grp-map-str (f , idp)) (Loop2Grp-map-str (g , idp)))
        idp
        ν₅
        _ x