{-# OPTIONS --without-K --rewriting --overlapping-instances --instance-search-depth=4 --lossy-unification #-}
open import lib.Basics
open import 2Semigroup
open import 2Grp
open import Hmtpy2Grp
open import K-hom-ind
open import KFunctor
open import Delooping
open import LoopK-hom
open import SqKLoop-aux10
module SqKLoop-lossy where
module SqKL-defs {i j} {X : Type i} {Y : Type j} {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} (x₀ : X) (y₀ : Y) where
Λx₀ = wksgrp-to-loop x₀ (cohsgrphom (idf (x₀ == x₀)) {{idf2G}})
Λy₀ = wksgrp-to-loop y₀ (cohsgrphom (idf (y₀ == y₀)) {{idf2G}})
K₂-rec-x₀ = K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)
K₂-rec-y₀ = K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)
module _ {i j} {X : Type i} {Y : Type j} {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} (x₀ : X) (y₀ : Y) where
open SqKL-defs x₀ y₀
sq-KΩ-lossy : (f* : ⊙[ X , x₀ ] ⊙→ ⊙[ Y , y₀ ]) →
f* ⊙∘ K₂-rec-hom x₀ (idf2G {{Loop2Grp x₀}})
⊙-crd∼
K₂-rec-hom y₀ (idf2G {{Loop2Grp y₀}}) ⊙∘ (K₂-map (Loop2Grp-map-str f*) , idp)
fst (sq-KΩ-lossy (f , idp)) =
K₂-∼-ind
(f ∘ K₂-rec-x₀)
(K₂-rec-y₀ ∘ K₂-map (Loop2Grp-map-str (f , idp)))
idp
(λ x →
ap-∘ f K₂-rec-x₀ (loop (x₀ == x₀) x) ∙
ap (ap f) (K₂-rec-hom-β-pts x₀ idf2G x) ∙
! (K₂-rec-hom-β-pts y₀ idf2G (ap f x)) ∙
! (ap (ap K₂-rec-y₀) (K₂-map-β-pts (Loop2Grp-map-str (f , idp)) x)) ∙
! (ap-∘ K₂-rec-y₀ (K₂-map (Loop2Grp-map-str (f , idp))) (loop (x₀ == x₀) x)))
κ
where
open Sq-aux10 x₀ f
abstract
κ : (x y : x₀ == x₀) → η₁ x y =ₛ η₂ x y
κ = SqKLoop-coher
snd (sq-KΩ-lossy (f , idp)) = idp