{-# OPTIONS --without-K --rewriting --overlapping-instances --instance-search-depth=3 --lossy-unification #-}
open import lib.Basics
open import 2Grp
open import Hmtpy2Grp
open import KFunctor
open import Delooping
open import SqKLoop
open import LoopK-hom
module KLoop-ptr-comp-aux5 where
module KLPC-aux5 {i j k} {X : Type i} {Y : Type j} {Z : Type k}
{{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} {{ηZ : has-level 2 Z}}
(f : X → Y) (g : Y → Z) (x₀ : X) (x : x₀ == x₀) where
open import KLoop-ptr-comp-defs f g x₀ x
β-pts-red3-aux : {c₁ c₂ : X} {p₁ p₂ : c₁ == c₂} (τ : p₁ == p₂)
→
! (ap (λ q → q) (ap (ap (g ∘ f)) τ)) ◃∙
ap-∘ g f p₁ ◃∙
ap (ap g) (ap (ap f) τ) ◃∎
=ₛ
ap-∘ g f p₂ ◃∎
β-pts-red3-aux {p₁ = idp} idp = =ₛ-in idp
abstract
β-pts-red5 :
! (ap (λ q → q) (ap (ap (g ∘ f)) (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) x))) ◃∙
! (ap (λ q → q) (ap-∘ (g ∘ f) (K₂-rec-x₀ x₀ z₀) (loop (x₀ == x₀) x))) ◃∙
ap (λ q → q) (ap-∘ g (λ z → f (fst (K₂-rec-hom x₀ idf2G) z)) (loop (x₀ == x₀) x)) ◃∙
ap (ap g) (ap-∘ f (K₂-rec-x₀ x₀ y₀) (loop (x₀ == x₀) x)) ◃∙
ap (ap g) (ap (ap f) (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) x)) ◃∎
=ₛ
ap-∘ g f x ◃∎
β-pts-red5 =
! (ap (λ q → q) (ap (ap (g ∘ f)) (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) x))) ◃∙
! (ap (λ q → q) (ap-∘ (g ∘ f) (K₂-rec-x₀ x₀ z₀) (loop (x₀ == x₀) x))) ◃∙
ap (λ q → q) (ap-∘ g (λ z → f (fst (K₂-rec-hom x₀ idf2G) z)) (loop (x₀ == x₀) x)) ◃∙
ap (ap g) (ap-∘ f (K₂-rec-x₀ x₀ y₀) (loop (x₀ == x₀) x)) ◃∙
ap (ap g) (ap (ap f) (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) x)) ◃∎
=ₛ⟨ 1 & 3 & lemma (loop (x₀ == x₀) x) ⟩
! (ap (λ q → q) (ap (ap (g ∘ f)) (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) x))) ◃∙
ap-∘ g f (ap (K₂-rec-x₀ x₀ z₀) (loop (x₀ == x₀) x)) ◃∙
ap (ap g) (ap (ap f) (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) x)) ◃∎
=ₛ⟨ β-pts-red3-aux (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) x) ⟩
ap-∘ g f x ◃∎ ∎ₛ
where
lemma : {b : _} (p : base (x₀ == x₀) == b) →
! (ap (λ q → q) (ap-∘ (g ∘ f) (K₂-rec-x₀ x₀ z₀) p)) ◃∙
ap (λ q → q) (ap-∘ g (λ z → f (fst (K₂-rec-hom x₀ idf2G) z)) p) ◃∙
ap (ap g) (ap-∘ f (K₂-rec-x₀ x₀ y₀) p) ◃∎
=ₛ
ap-∘ g f (ap (K₂-rec-x₀ x₀ z₀) p) ◃∎
lemma idp = =ₛ-in idp