{-# OPTIONS --without-K --rewriting --overlapping-instances --instance-search-depth=4 --lossy-unification #-}
open import lib.Basics
open import 2Grp
open import Hmtpy2Grp
open import KFunctor
open import Delooping
open import SqKLoop
open import LoopK-hom
module KLoop-ptr-comp-aux9 where
module KLPC-aux9 {i j k} {X : Type i} {Y : Type j} {Z : Type k}
{{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} {{ηZ : has-level 2 Z}}
(f : X → Y) (g : Y → Z) (x₀ : X) (x : x₀ == x₀) where
open import KLoop-ptr-comp-defs f g x₀ x
private
s = ap (λ z → ap (fst (K₂-rec-hom z₀ idf2G)) (loop (z₀ == z₀) z)) (ap-∘ g f x)
abstract
β-pts-red7 :
! (ap (λ q → q) (! (ap (ap (K₂-rec-y₀ x₀ z₀)) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)))) ◃∙
ap (λ z → ap (fst (K₂-rec-hom z₀ idf2G)) (loop (z₀ == z₀) z)) (ap-∘ g f x) ◃∙
idp ◃∙
! (ap (ap (fst (K₂-rec-hom z₀ idf2G))) (ap (loop (z₀ == z₀)) (ap-∘ g f x))) ◃∙
! (ap (ap (fst (K₂-rec-hom z₀ idf2G))) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)) ◃∎
=ₛ
idp ◃∎
β-pts-red7 =
! (ap (λ q → q) (! (ap (ap (K₂-rec-y₀ x₀ z₀)) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)))) ◃∙
s ◃∙
idp ◃∙
! (ap (ap (fst (K₂-rec-hom z₀ idf2G))) (ap (loop (z₀ == z₀)) (ap-∘ g f x))) ◃∙
! (ap (ap (fst (K₂-rec-hom z₀ idf2G))) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)) ◃∎
=ₛ₁⟨ 1 & 1 & ap-∘ (ap (fst (K₂-rec-hom z₀ idf2G))) (loop (z₀ == z₀)) (ap-∘ g f x) ⟩
! (ap (λ q → q) (! (ap (ap (K₂-rec-y₀ x₀ z₀)) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)))) ◃∙
ap (ap (fst (K₂-rec-hom z₀ idf2G))) (ap (loop (z₀ == z₀)) (ap-∘ g f x)) ◃∙
idp ◃∙
! (ap (ap (fst (K₂-rec-hom z₀ idf2G))) (ap (loop (z₀ == z₀)) (ap-∘ g f x))) ◃∙
! (ap (ap (fst (K₂-rec-hom z₀ idf2G))) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)) ◃∎
=ₛ₁⟨ 1 & 3 & !-inv-r (ap (ap (fst (K₂-rec-hom z₀ idf2G))) (ap (loop (z₀ == z₀)) (ap-∘ g f x))) ⟩
! (ap (λ q → q) (! (ap (ap (K₂-rec-y₀ x₀ z₀)) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)))) ◃∙
idp ◃∙
! (ap (ap (fst (K₂-rec-hom z₀ idf2G))) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)) ◃∎
=ₛ₁⟨ 0 & 1 &
ap ! (ap-idf (! (ap (ap (K₂-rec-y₀ x₀ z₀)) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)))) ∙
!-! (ap (ap (K₂-rec-y₀ x₀ z₀)) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)) ⟩
ap (ap (fst (K₂-rec-hom z₀ idf2G))) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x) ◃∙
idp ◃∙
! (ap (ap (fst (K₂-rec-hom z₀ idf2G))) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)) ◃∎
=ₛ₁⟨ !-inv-r (ap (ap (fst (K₂-rec-hom z₀ idf2G))) (K₂-map-β-pts (Loop2Grp-map-str (g ∘ f , idp)) x)) ⟩
idp ◃∎ ∎ₛ