{-# OPTIONS --without-K --rewriting --overlapping-instances --instance-search-depth=4 --lossy-unification #-}
open import lib.Basics
open import 2Grp
open import Hmtpy2Grp
open import KFunctor
open import K-hom-ind
open import Delooping
open import LoopK-hom
open import KFunctor-idf
open import SqKLoop
open import apK
module KLoop-ptr-idf-aux0
{i} {X : Type i} {{ηX : has-level 2 X}} (x₀ : X) (x : x₀ == x₀) where
private
ν₁ =
(λ v →
ap-∘ (idf X) (K₂-rec-x₀ x₀ x₀) (loop (x₀ == x₀) v) ∙
ap (ap (idf X)) (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) v) ∙
! (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) (ap (idf X) v)) ∙
! (ap (ap (K₂-rec-y₀ x₀ x₀)) (K₂-map-β-pts (Loop2Grp-map-str (idf X , idp)) v)) ∙
! (ap-∘ (K₂-rec-y₀ x₀ x₀) (K₂-map (Loop2Grp-map-str (idf X , idp))) (loop (x₀ == x₀) v)))
ν₂ =
(λ v →
K₂-map-β-pts (Loop2Grp-map-str (idf X , idp)) v ∙
ap (loop (x₀ == x₀)) (ap-idf v) ∙
! (K₂-map-β-pts (idf2G {{Loop2Grp x₀}}) v))
abstract
K₂-β-1 :
hmtpy-nat-∙' (fst (sq-KΩ x₀ x₀ (⊙idf ⊙[ X , x₀ ]))) (loop (x₀ == x₀) x) ◃∎
=ₛ
ap-∘ (idf X) (K₂-rec-x₀ x₀ x₀) (loop (x₀ == x₀) x) ◃∙
ap (ap (idf X)) (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) x) ◃∙
! (K₂-rec-hom-β-pts x₀ (idf2G {{Loop2Grp x₀}}) (ap (idf X) x)) ◃∙
! (ap (ap (K₂-rec-y₀ x₀ x₀)) (K₂-map-β-pts (Loop2Grp-map-str (idf X , idp)) x)) ◃∙
! (ap-∘ (K₂-rec-y₀ x₀ x₀) (K₂-map (Loop2Grp-map-str (idf X , idp))) (loop (x₀ == x₀) x)) ◃∎
K₂-β-1 = =ₛ-in $
K₂-∼-ind-β
(K₂-rec-x₀ x₀ x₀)
(K₂-rec-y₀ x₀ x₀ ∘ K₂-map (Loop2Grp-map-str (idf X , idp)))
idp
ν₁
_ x
K₂-β-2 :
hmtpy-nat-∙' (fst (apK₂ (Loop2Grp-map-idf ⊙[ X , x₀ ]))) (loop (x₀ == x₀) x) ◃∎
=ₛ
K₂-map-β-pts (Loop2Grp-map-str (idf X , idp)) x ◃∙
ap (loop (x₀ == x₀)) (ap-idf x) ◃∙
! (K₂-map-β-pts (idf2G {{Loop2Grp x₀}}) x) ◃∎
K₂-β-2 = =ₛ-in $
K₂-∼-ind-β
(K₂-map (Loop2Grp-map-str (idf X , idp)))
(K₂-map (idf2G {{Loop2Grp x₀}}))
idp
ν₂
_ x
K₂-β-3 :
hmtpy-nat-∙' (fst (K₂-map-idf {{Loop2Grp x₀}})) (loop (x₀ == x₀) x) ◃∎
=ₛ
K₂-map-β-pts (idf2G {{Loop2Grp x₀}}) x ◃∙
! (ap-idf (loop (x₀ == x₀) x)) ◃∎
K₂-β-3 = =ₛ-in $
K₂-∼-ind-β
(K₂-map (idf2G {{Loop2Grp x₀}}))
(idf (K₂ (x₀ == x₀) (Loop2Grp x₀)))
idp
(λ v →
K₂-map-β-pts (idf2G {{Loop2Grp x₀}}) v ∙ ! (ap-idf (loop (x₀ == x₀) v)))
_ x