{-# OPTIONS --without-K --rewriting --lossy-unification --overlapping-instances --instance-search-depth=4 #-}
open import lib.Basics
open import 2Semigroup
open import 2Grp
open import Hmtpy2Grp
open import KFunctor
open import Delooping
open import LoopK-hom
open import SqKLoop-aux1
open import SqKLoop-aux2
open import SqKLoop-aux3
open import SqKLoop-aux9
module SqKLoop-aux10 where
module Sq-aux10 {i j} {X : Type i} {Y : Type j} {{ηX : has-level 2 X}} {{ηY : has-level 2 Y}} (x₀ : X) (f : X → Y) where
private
y₀ = f x₀
Λx₀ = wksgrp-to-loop x₀ (cohsgrphom (idf (x₀ == x₀)) {{idf2G}})
Λy₀ = wksgrp-to-loop y₀ (cohsgrphom (idf (y₀ == y₀)) {{idf2G}})
module _ (x y : x₀ == x₀) where
η₁ =
∙-ap (f ∘ K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀))
(loop (x₀ == x₀) x) (loop (x₀ == x₀) y) ◃∙
ap (ap (f ∘ K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀)))
(loop-comp (x₀ == x₀) x y) ◃∙
(ap-∘ f (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀))
(loop (x₀ == x₀) (x ∙ y)) ∙
ap (ap f) (K₂-rec-hom-β-pts x₀ idf2G (x ∙ y)) ∙
! (K₂-rec-hom-β-pts y₀ idf2G (ap f (x ∙ y))) ∙
! (ap (ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
(K₂-map-β-pts (Loop2Grp-map-str (f , idp)) (x ∙ y))) ∙
! (ap-∘ (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)) (K₂-map (Loop2Grp-map-str (f , idp)))
(loop (x₀ == x₀) (x ∙ y)))) ◃∎
η₂ =
ap2 _∙_
(ap-∘ f (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀))
(loop (x₀ == x₀) x) ∙
ap (ap f) (K₂-rec-hom-β-pts x₀ idf2G x) ∙
! (K₂-rec-hom-β-pts y₀ idf2G (ap f x)) ∙
! (ap (ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
(K₂-map-β-pts (Loop2Grp-map-str (f , idp)) x)) ∙
! (ap-∘
(K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀))
(K₂-map (Loop2Grp-map-str (f , idp)))
(loop (x₀ == x₀) x)))
(ap-∘ f (K₂-rec (x₀ == x₀) x₀ (loop' Λx₀) (loop-comp' Λx₀) (loop-assoc' Λx₀))
(loop (x₀ == x₀) y) ∙
ap (ap f) (K₂-rec-hom-β-pts x₀ idf2G y) ∙
! (K₂-rec-hom-β-pts y₀ idf2G (ap f y)) ∙
! (ap (ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀)))
(K₂-map-β-pts (Loop2Grp-map-str (f , idp)) y)) ∙
! (ap-∘
(K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀))
(K₂-map (Loop2Grp-map-str (f , idp)))
(loop (x₀ == x₀) y))) ◃∙
∙-assoc2-!-inv-l
(K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀) ∘ K₂-map (Loop2Grp-map-str (f , idp)))
idp idp (loop (x₀ == x₀) x) (loop (x₀ == x₀) y) ◃∙
ap (ap (K₂-rec (y₀ == y₀) y₀ (loop' Λy₀) (loop-comp' Λy₀) (loop-assoc' Λy₀) ∘ K₂-map (Loop2Grp-map-str (f , idp))))
(loop-comp (x₀ == x₀) x y) ◃∎
private
Σ₁ = SqKLoop-coher1 x₀ f x y
Σ₂ = SqKLoop-coher2 x₀ f x y
Σ₃ = SqKLoop-coher3 x₀ f x y
Σ₄ = SqKLoop-coher4 x₀ f x y
abstract
SqKLoop-coher : η₁ =ₛ η₂
SqKLoop-coher = Σ₁ ∙ₛ Σ₂ ∙ₛ Σ₃ ∙ₛ Σ₄